1276
Russ. Chem. Bull., Int. Ed., Vol. 66, No. 7, July, 2017
Krasovskiy et al.
described for 4а from α,ωꢀdi[(3ꢀchloropropyl)methylphenylꢀ
silyl] polydimethylsiloxane (6.93 g) and 1,2ꢀdimethylimidazole
(2.11 g, 0.022 mol, 10% excess) in tetrahydrofuran (6 mL) and
acetonitrile (1.5 mL).
α,ωꢀBis[(1,2ꢀdimethylimidazoliumꢀ3ꢀyl)methyldimethylꢀ
silyl]polymethylphenylsiloxane dichloride (4d) was prepared as
described for 4а from α,ωꢀdi(chloromethyldimethylsilyl)ꢀ
polymethylphenylsiloxane (3.5 g), 1,2ꢀdimethylimidazole (0.96 g,
0.01 mol, 10% excess) in tetrahydrofuran (4 mL) and acetoꢀ
nitrile (1 mL).
(5d, IL IV) was prepared as described for 5а from 4d and lithium
bis(trifluoromethylsulfonyl) (2.87 g, 0.01 mol, 10% excess).
Followed the addition of water to dissolve the precipitate, three
liquid layers are formed in the flask. The upper layer presenting
cyclic polymethylphenylsiloxanes was separated in a separaꢀ
tion funnel. Dichloromethane was then added, the organic layer
was washed with water to remove an excess of reactants acꢀ
cording the procedure described for the compound 5а. Yield
2.51 g (48%). 1Н NMR (300.13 MHz, DMSOꢀd6), δ: 0.03—0.17
(m, 36 Н, СН3Si); 2.55 (s, 6 Н, ССН3); 3.62—3.76 (s, 6 Н,
NСН3 + с, 4 Н, NСН2Si); 7.20—7.70 (m, 4 Н, СН + 40 Н,
С6Н5). 13С NMR (75.47 MHz, DMSOꢀd6), δ: –(0.72—0.24)
(m, СН3—Si—C6H5); 1.14 (m, СH3—Si—СН3); 9.46 (s, СH2ꢀ
СH2CH2Si); 10.55 (s, СН2СН2СН2); 34.21 (s, ССН3); 35.06
(s, NCH3); 40.19 (s, NCH2СН2); 113.65, 117.99, 123.36,
126.44 (q, SCF3, JC,F = 321.2 Hz); 121.57 (s, СН); 122.62
(s, СН); 127.97—136.67 (С6Н5); 143.71 (s, NCN).
α,ωꢀBis[(1,2ꢀdimethylimidazoliumꢀ3ꢀyl)methyldimethylꢀ
silyl]polydimethylsiloxaneꢀbis(trifluoromethylsulfonyl)imide (5a,
IL I). To a reaction mixture described in the synthesis of the
compound 4а (from the previous step after removing organic
solvents), a solution of lithium bis(trifluoromethylsulfonꢀ
yl)imide (4.37 g, 0.015 mol, 10% excess) in 50 mL of deionized
water was added. The reaction mixture was stirred for 1 h at
∼20 °C, then the twoꢀphase liquid system was diluted with 50 mL
of dichloromethane. Organic layer was washed with water in
a separation funnel to remove an excess of 1,2ꢀdimethylimidꢀ
azole and lithium salts until no chloride anion can be detected
upon the silver nitrate addition. Traces of water were removed
by azeotropic distillation with dichloromethane. The residues
of the solvent were removed in vacuo. Yield 7.96 g (85%). 1Н NMR
(300.13 MHz, DMSOꢀd6), δ: 0.03—0.19 (s, 3 Н, СН3Si); 2.54
(s, 3 Н, ССН3); 3.76 (s, 3 Н, NСН3); 3.83 (s, 2 Н, NСН2Si);
7.43 (m, 1 Н, СН); 7.62 (m, 1 Н, СН). 13С NMR (75.47 MHz,
DMSOꢀd6), δ: 0.49—1.33 (s, СH3Si); 9.69 (s, ССН3); 35.23
(s, NCH3); 40.35 (s, NCH2Si); 113.45, 117.80, 122.07, 126.34
(q, SCF3, JC,F = 321.2 Hz); 121.80 (s, СН); 122.83 (s, СН);
143.94 (s, NCN).
α,ωꢀBis[3ꢀ(1,2ꢀdimethylimidazoliumꢀ3ꢀyl)propyldimethylꢀ
silyl]polydimethylsiloxaneꢀbis(trifluoromethylsulfonyl)imide (5b,
IL II) was prepared as described for 5а from 4b and lithium
bis(trifluoromethylsulfonyl)imide (10.80 g, 0.038 mol, 10% exꢀ
cess). Yield 19.36 g (88%). 1H NMR (300 MHz, DMSOꢀd6), δ:
0.03—0.19 (s, 35 Н, SiСН3); 0.50 (m, 4 Н, СН2Si); 1.70 (m, 4 Н,
CH2СН2CH2); 2.57 (s, 6 Н, ССН3); 3.75 (s, 6 Н, NCH3); 4.08
(t, 4 Н, NСН2); 7.62 (m, 4 H, C(5)H, C(4)H). 13С NMR
(75.47 MHz, DMSOꢀd6), δ: 0.29—1.43 (s, SiСH3); 9.51 (s,
СH2CH2Si); 14.43 (s, СН2СН2СН2); 23.90 (s, ССН3); 35.04
(s, NCH3); 50.48 (s, NCH2СН2); 113.45, 117.80, 122.07,
126.34 (q, SCF3, JC,F = 321.2 Hz); 121.22 (s, СН); 122.75
(s, СН); 144.58 (s, NCN).
α,ωꢀBis[3ꢀ(1,2ꢀdimethylimidazoliumꢀ3ꢀyl)propylmethylꢀ
phenylsilyl]polydimethylsiloxaneꢀbis(trifluoromethylsulfonyl)ꢀ
imide (5с, IL III) was prepared as described for 5а from 4с and
lithium bis(trifluoromethylsulfonyl)imide (6.31 g, 0.022 mol,
10% excess). Yield 8.05 g (91%). 1Н NMR (300.13 MHz,
DMSOꢀd6), δ: 0.05 (m, 24 Н, СН3—Si—CH3); 0.34 (m, 6 Н,
СН3—Si—C6H5); 0.74 (m, 4 Н, СН2Si); 1.68 (m, 4 Н,
CH2СН2CH2); 2.51 (s, 8 Н, ССН3); 3.73 (s, 6 Н, NCH3); 4.06
(m, 4 Н, NСН2); 7.37—7.59 (m, 4 Н, СН + 10 Н, С6Н5).
13С NMR (75.47 MHz, DMSOꢀd6), δ: –(1.09—0.96)
(m, СН3—Si—C6H5); 1.29—1.63 (m, СH3—Si—СН3); 9.47
(s, СH2СH2CH2Si); 13.49 (s, СН2СН2СН2); 23.92 (s, ССН3);
35.04 (s, NCH3); 50.33 (s, NCH2СН2); 113.45, 117.80, 122.07,
126.37 (q, SCF3, JC,F = 321.2 Hz); 121.16 s, СН); 122.76 (с, СН);
128.32, 130.06, 133.42, 137.86 (s, С6Н5); 144.53 (s, NCN).
α,ωꢀBis[(1,2ꢀdimethylimidazoliumꢀ3ꢀyl)methyldimethylꢀ
silyl]polymethylphenylsiloxaneꢀbis(trifluoromethylsulfonyl)imide
The present study was was financially supported by the
Russian Science Foundation (project No. 14ꢀ19ꢀ00503).
References
1. R. Shi, Y. Wang, Sci. Rep., 2016, 6, Article number: 19644.
2. K. E. Johnson, Interface, 2007, 16, 38—41.
3. P. Wassercheid, T. Welton, Ionic Liquids in Synthesis, Wileyꢀ
VCH, New York, 2nd ed., 2008.
4. P. Wasserscheid, J. Joni, Handbook of Green Chemistry,
Green Organic Synthesis in Ionic Liquids, Part 6, Wileyꢀ
9783527628698.hgc061/abstract;jsessionid=6B0FEEBBD
3EA10609B4A7AA18DA6B9F6.f04t02.
5. J. P. Hallett, T.Welton, Chem. Rev., 2011, 111, 3508—3576.
6. V. I. Parvulescu, C. Hardacre, Chem. Rev., 2007, 107,
2615—2665; T. Welton, Coord. Chem. Rev., 2004, 2459—2477.
7. R. Ratti, Adv. Chem., 2014, 2014, Article ID 729842, 16 p.
8. Y. Qiao, A. D. Headley, Catalysts, 2013, 3, 709—725.
9. M. K. Potdar, G. F. Kelso, L. Schwarz, C. Zhang, M. T. W.
Hearn, Molecules, 2015, 20, 16788—16816.
10. T. Tsuda, C. L. Hussey, Electrochemical Applications of
RoomꢀTemperature Ionic Liquids, The Electrochemical Soꢀ
ciety Interface, Spring, 2007, р. 42—49.
11. S. Zein El Abedin, K. S. Ryder, O. Hцfft, H. K. Farag, Int.
J. Electrochem., 2012, 2012, Article ID 978060, 2 pages;
W. Buijs, G.ꢀJ. Witkamp, M. C. Kroon, Int. J. Electrochem.,
2012, 2012, Article ID 589050, 6 pages; V. Romero, M. V.
Martínez de Yuso, A. Arango, E. RodrнguezꢀCastellуn,
J. Benavente, Int. J. Electrochem., 2012, 2012, Article ID
349435, 9 pages; V. V. Singh, A. K. Nigam, A. Batra,
M. Boopathi, B. Singh, R. Vijayaraghavan, Int. J. Electroꢀ
chem., 2012, 2012, Article ID 165683, 19 pages.
12. M. Armand, F. Endres, D. MacFarlane, H. Ohno, Nature
Materials, 2009, 8, 621—629.
13. D. H. Zaitsau, G. J. Kabo, A. A. Strechan, Y. U. Paulechka,
A. Tschersich, S. P. Verevkin, A. Heintz, J. Phys. Chem. A,
2006, 110, 7303—7306.
14. Y. U. Paulechka, D. H. Zaitsau, G. J. Kabo, A. A. Strechan,
Thermochimica Acta, 2005,439, 158—160.
15. L. M. N. B. F. Santos, J. N. Canongia Lopes, J. A. P.
Coutinho, J. M. S. S. Esperança, L. R. Gomes, I. M.