1114
resulting solution was allowed to warm up to 0°C for 1a and 1b, to room temperature for 1c, 1d, 1g and 1i, or heated at
reflux for 1e and 1f. The reaction mixture was stirred at this temperature until TLC indicated complete reaction. Ammonium
chloride solution was added and the mixture was extracted with ether, washed with 5% aqueous sodium hydroxide solution,
dried (MgSO4) and chromatographed.
10. Selected spectroscopy data: compound 2e:1H NMR (CDCl3) δ 7.54–7.51 (m, 2H, PhSi), 7.43–7.27 (m, 8H, PhSi and PhS),
6.75 (d, 1H, J=18.0, _CHS), 5.99 (d, 1H, J=18.0, _CHSi), 0.36 (s, 6H, Me2Si); 13C NMR (CDCl3) δ 140.70 ( _CHS),
139.74, 129.28, 127.45, 127.12 (PhS), 137.03, 133.01, 129.06, 127.74 (PhSi), 126.05 (_CHSi), 0.92 (Me2Si). Compound
1
3: H NMR (CDCl3) δ 7.83–7.19 (m, 10H, PhSi), 6.44 (dd, 1H, J=13.5, 5.8, _CHOSi), 4.56 (d, 1H, J=13.5, _CH cis to
OSi), 4.14 (d, 1H, J=5.8, _CH trans to OSi), 1.18 (s, 9H, Me3CSi); 13C NMR (CDCl3) δ 146.47 (_CHOSi), 135.75, 132.45,
129.79, 127.41 (PhSi), 94.74 (_CH2), 26.49 (MeCSi), 19.05 (CSi). Compound 4: IR (CCl4)/cm−1 1700 (C_O), 1100 (SiPh);
1H NMR (CDCl3) δ 9.86 (d, 1H, J=3.5, HC_O), 7.68–6.96 (m, 15H, PhC, Ph2Si), 4.48 (d, 1H, J=3.5, CHCHO), 0.97 (s,
9H, tBuSi); 13C NMR (CDCl3) δ 200.09 (HC_O), 136.69, 132.27, 131.52, 129.90, 129.76, 127.79, 127.62 (Ph2Si), 134.11,
t
129.47, 128.39, 126.18 (Ph), 53.68 (CHCHO), 27.72, 19.61 (tBu); MS m/z 358 (M+, 17%), 301 (M− Bu, 18), 281 (M−Ph,
1
59), 239 (tBuPh2Si+, 100). Compound 5: IR (film)/cm−1 3450 br (OH), 1100 (SiPh); H NMR (CDCl3) δ 7.82–7.35 (m,
15H, Ph2Si, PhS), 4.28 (d, 1H, J=3.8, CHOH), 3.72 (m, 1H, CHS), 1.67 (s br, 1H, OH), 1.35 (m, 4H, CH2–CH2), 1.16 (s,
9H, tBuSi), 1.06 (m, 2H, CH2), 0.71 (t, 3H, J=7.1, Me); 13C NMR (CDCl3) δ 136.19, 132.73, 129.77, 127.48 (PhSi), 136.67,
132.03, 129.61, 127.87 (PhS), 72.73 (CHOH), 55.38 (CHS), 34.06, 27.90, 22.18, 13.81 (Bu), 28.54, 18.85 (tBuSi).
11. Although the overall process is stereospecific, the initial Z or E vinyl thioether undergoes postisomerization in solution in
the presence of catalytic amounts of benzenethiol. To avoid this problem, the hydrolyzed reaction mixtures were washed
with 5% aqueous sodium hydroxide solution.
12. Unpublished work by Hudrlik and Kulkarni (Hudrlik, P. F.; Hudrlik, A. M.; In Advances in Silicon Chemistry; Larson, G.
L., Ed. α,β-Epoxysilanes. JAI Press: London, 1993; Vol. 2, p. 55) involving two steps (ring opening by PhSH/alumina and
elimination by KH/THF or BF3·Et2O). We have found only one example of the formation of a trans vinyl sulfide resulting
from the α-opening of a trans trimethylsilylepoxide with lithium phenylsulfide: Okamoto, S.; Yoshino, T.; Tsujiyama, H.;
Sato, F. Tetrahedron Lett. 1991, 32, 5793.
13. Regiospecific β-opening of tert-butyldiphenylsilylepoxides has been observed by us in their reactions with methyllithium
at −25°C (Ref. 7) and with lithium diphenylphosphide (Ref. 5).
14. This result is different from the single example described of β-opening using lithium phenylsulfide: Lipshutz, B. H.;
Lindsley, C. Susfalk, R.; Gross, T. Tetrahedron Lett. 1994, 35, 8999. They obtained the β-sulfur α-silyl alcohol resulting
from β-opening of α-epoxytriisopropylsilane without Brook rearrangement.
15. Hudrlik, P. F; Hudrlik, A. M.; Kulkarni, A. K. J. Am. Chem. Soc. 1985, 107, 4260.
16. This pathway has also been observed in the reactions of acylsilanes with diazomethane: Brook, A. G.; Limburg, W. W.;
MacRae, D. M.; Fieldhouse, S. A. J. Am. Chem. Soc. 1967, 89, 4384, and in the reactions of α-chloroacylsilanes with
Grignard reagents: Sato, T.; Abe,T.; Kuwajima, I. Tetrahedron. Lett. 1978, 259.
17. Oswald, A. A.; Griesbaum, K.; Hudson Jr., B. E.; Bregman, J. M. J. Am. Chem. Soc. 1964, 86, 2877.
18. (a) Peterson, D. J. J. Org. Chem. 1968, 33, 780. (b) Corey, E. J.; Shulman, J. I. J. Org. Chem. 1970, 35, 777. (c) Carey, F.
A.; Court, A. S. J. Org. Chem. 1972, 37, 939. (d) Trost, B. M.; Keeley, D. E. J. Am. Chem. Soc. 1976, 98, 248.
19. For a description of the synthetic chemistry of vinylsulfides, see: (a) Trost, B. M.; Lavoie, A. C. J. Am. Chem. Soc. 1983,
105, 5075, and references cited therein. (b) Rigby, J. H.; Sage, J. M. J. Org. Chem. 1983, 48, 3591. (c) Morris, T. H.; Smith,
E. H.; Walsh, R. J. Chem. Soc. Chem. Commun. 1987, 964.
20. For a review of the chemistry of organosulfur-silicon compounds, see: Block, E.; Aslam, M. Tetrahedron 1988, 44, 281.
21. Magnus, P.; Quagliato, D. J. Org. Chem. 1985, 50, 1621.
22. For reviews, see: (a) Fleming, I. Chimia 1980, 34, 265. (b) Brownbridge, P. Synthesis 1983, 1, 55. (c) Colvin, E. W. Silicon
in Organic Synthesis; Butterworths: London, 1981; pp. 198–287. (d) Weber, W. P. Silicon Reagents for Organic Synthesis;
Springer-Verlag: Berlin, 1983; pp. 206–272.
23. Hudrlik, P. F.; Hudrlik, A. M.; Misra, R. N.; Peterson, D.; Withers, G. P.; Kulkarni, A. K. J. Org. Chem. 1980, 45, 4444.
24. Hudrlik, P. F.; Kulkarni, A. K. J. Am. Chem. Soc. 1981, 103, 6251.