Page 5 of 6
ACS Medicinal Chemistry Letters
dimethoxycurcumin than curcumin. Cell. Death. Dis. 2014, 5,
e1112.
ABBREVIATIONS
1
2
3
4
5
6
7
8
ER, Endoplasmic reticulum; CCK-8, CellCountingKit-8; MTT, 3-
(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium
bromide; IC50, 50% inhibitory concentration; GRP78, Glucose-
regulated protein; LC3, Microtubule-associatedprotein light
chain 3; p62, Sequestosome 1; PE, Phosphatidyl ethanolamine;
PS, Phosphatidylserine.
(15) Wang, W. B.; Feng, L. X.; Yue, Q. X.; Wu, W. Y.; Guan, S.
H.; Jiang, B. H.; Yang, M.; Liu, X.; Guo, D. A. Paraptosis
accompanied by autophagy and apoptosis was induced by celastrol,
a natural compound with influence on proteasome, ER stress and
Hsp90. J Cell Physiol. 2012, 227, 2196-2206.
(16) Yang, X.; Sun, G.; Yang, C.; Wang, B. Novel rhein analogues
as potential anticancer agents. ChemMedChem. 2011, 6, 2294-2301.
(17) Su, Z. Y.; Tian, W.; Li, J.; Wang, C. M.; Pan, Z. Y.; Li, D.
R.; Hou, H. X. Biological evaluation and molecular docking of
Rhein as a multi-targeted radiotherapy sensitization agent of
nasopharyngeal carcinoma. J. Mol. Struct. 2017, 1147, 462-468.
(18) Koceva-Chyła, A.; Jedrzejczak, M.; Skierski, J.; Kania, K.;
Jóźwiak, Z. Mechanisms of induction of apoptosis by
anthraquinone anticancer drugs aclarubicin and mitoxantrone in
comparison with doxorubicin: relation to drug cytotoxicity and
caspase-3 activation. Apoptosis. 2005, 10, 1497-1514.
(19) Kluza, J. M.; Marchetti, P.; Gallego, M. A.; Lancel, S.;
Fournier, C.; Loyens, A.; Beauvillain, J. C.; Bailly, C.
Mitochondrial proliferation during apoptosis induced by anticancer
agents: effects of doxorubicin and mitoxantrone on cancer and
cardiac cells. Oncogene. 2004, 23, 7018-7030.
(20) Zheng, H.; Dong, Y.; Li, L.; Sun, B.; Liu, L.; Yuan, H.; Lou,
H. Novel benzo[α]quinolizidine analogs induce cancer cell death
through paraptosis and apoptosis. J. Med. Chem. 2016, 59, 5063-
5076.
(21) Segawa, K.; Kurata, S.; Yanagihashi, Y.; Brummelkamp, T.
R.; Matsuda, F.; Nagata, S. Caspase-mediated cleavage of
phospholipid flippase for apoptotic phosphatidylserine exposure.
Science, 2014, 344, 1164-1168.
(22) Kothakota, S.; Azuma, T.; Reinhard, C.; Klippel, A.; Tang,
J.; Chu, K.; McGarry, T. J.; Kirschner, M. W.; Koths, K.;
Kwiatkowski, D. J. Caspase-3-generated fragment of gelsolin:
effector of morphological change in apoptosis. Science 1997, 278,
294-298.
(23) Liu, X.; Zou, H.; Slaughter, C.; Wang, X. DFF, a
heterodimeric protein that functions downstream of caspase-3 to
trigger DNA fragmentation during apoptosis. Cell. 1997, 89, 175-
184.
(24) Lee, A. S. The ER chaperone and signaling regulator
GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods.
2005, 35, 373-381.
(25) Ichimura, Y.; Kirisako, T.; Takao, T.; Satomi, Y.; Shimonishi,
Y.; Ishihara, N.; Mizushima, N.; Tanida, I.; Kominami, E.; Ohsumi,
M. A ubiquitin-like system mediates protein lipidation. Nature
2000, 408, 488-492.
(26) Xie, Z.; Klionsky, D. J. Autophagosome formation: core
machinery and adaptations. Nat. Cell. Bio. 2007, 9, 1102.
(27) Mathew, R.; Karp, C. M.; Beaudoin, B.; Vuong, N.; Chen,
G.; Chen, H. Y.; Bray, K.; Reddy, A.; Bhanot, G.; Gelinas, C.
Autophagy suppresses tumorigenesis through elimination of p62.
Cell. 2009, 137, 1062-1075.
(28) Katsuragi, Y.; Ichimura, Y.; Komatsu, M. p62/SQSTM 1
functions as a signaling hub and an autophagy adaptor. FEBS. J.
2015, 282, 4672-4678.
(29) Pankiv, S.; Clausen, T. H.; Lamark, T.; Brech, A.; Bruun, J.
A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T.
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation
of ubiquitinated protein aggregates by autophagy. J. Biol Chem.
2007, 282, 24131-24145.
(30) Ichimura, Y.; Kumanomidou, T.; Sou, Y. S.; Mizushima, T.;
Ezaki, J.; Ueno, T.; Kominami, E.; Yamane, T.; Tanaka, K.;
Komatsu, M. Structural basis for sorting mechanism of p62 in
selective autophagy. J. Biol Chem. 2008, 283, 22847-22857.
REFERENCES
(1) Sperandio, S.; de Belle, I.; Bredesen, D. E. An alternative,
nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci.
2000, 97, 14376-14381.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) Yoon, M. J.; Kim, E. H.; Kwon, T. K.; Park, S. A.; Choi, K. S.
Simultaneous mitochondrial Ca2+ overload and proteasomal
inhibition are responsible for the induction of paraptosis in
malignant breast cancer cells. Cancer. Lett. 2012, 324, 197-209.
(3) Sperandio, S.; Poksay, K.; de Belle, I.; Lafuente, M. J.; Liu,
B.; Nasir, J.; Bredesen, D. E. Paraptosis: mediation by MAP
kinases and inhibition by AIP-1/Alix. Cell. Death. Dis. 2004, 11,
1066-1075.
(4) Monel, B.; Compton, A. A.; Bruel, T.; Amraoui, S.; Burlaud‐
Gaillard, J.; Roy, N.; Guivel‐Benhassine, F.; Porrot, F.; Génin, P.;
Meertens, L. Zika virus induces massive cytoplasmic vacuolization
and paraptosis-like death in infected cells. EMBO. J. 2017, 36,
1653-1668.
(5) Tardito, S.; Bassanetti, I.; Bignardi, C.; Elviri, L.; Tegoni, M.;
Mucchino, C.; Bussolati, O.; Franchi-Gazzola, R.; Marchiò, L.
Copper binding agents acting as copper ionophores lead to caspase
inhibition and paraptotic cell death in human cancer cells. J. Am.
Chem. Soc. 2011, 133, 6235-6242.
(6) Gandin, V.; Tisato, F.; Dolmella, A.; Pellei, M. ; Santini, C.;
Giorgetti, M.; Marzano, C.; Porchia, M. In vitro and in vivo
anticancer activity of copper (I) complexes with homoscorpionate
tridentate tris (pyrazolyl) borate and auxiliary monodentate
phosphine ligands. J. Med. Chem. 2014, 57, 4745-4760.
(7) Marzano, C.; Gandin, V.; Pellei, M.; Colavito, D.; Papini, G.;
Lobbia, G. G.; Del Giudice, E.; Porchia, M.; Tisato, F.; Santini, C.
In vitro antitumor activity of the water soluble copper (I)
complexes bearing the tris (hydroxymethyl) phosphine ligand. J.
Med. Chem. 2008, 51, 798-808.
(8) Li, C.; Ip, K. W.; Man, W. L.; Song, D.; He, M. L.; Yiu, S. M.;
Lau, T. C.; Zhu, G. Cytotoxic (salen) ruthenium (III) anticancer
complexes exhibit different modes of cell death directed by axial
ligands. Chem. Sci. 2017, 8, 6865-6870.
(9) Pierroz, V.; Rubbiani, R.; Gentili, C.; Patra, M.; Mari, C.;
Gasser, G.; Ferrari, S. Dual mode of cell death upon the photo-
irradiation of a Ru II polypyridyl complex in interphase or mitosis.
Chem. Sci. 2016, 7, 6115-6124.
(10) Cini, M.; Williams, H.; Fay, M. W.; Searle, M. S.; Woodward,
S.; Bradshaw, T. D. Enantiopure titanocene complexes–direct
evidence for paraptosis in cancer cells. Metallomics. Metallomics.
2016, 8, 286-297.
(11) Ye, R. R.; Tan, C. P.; Chen, M. H.; Hao, L.; Ji, L. N.; Mao,
Z. W. Mono ‐ and Dinuclear Phosphorescent Rhenium (I)
Complexes: Impact of Subcellular Localization on Anticancer
Mechanisms. Chemistry. 2016, 22, 7800-7809.
(12) Chen, T. S.; Wang, X. P.; Sun, L.; Wang, L. X.; Xing, D.;
Mok, M. Taxol induces caspase-independent cytoplasmic
vacuolization and cell death through endoplasmic reticulum (ER)
swelling in ASTC-a-1 cells. Cancer. Lett. 2008, 270, 164-172.
(13) Sun, Q.; Chen, T.; Wang, X.; Wei, X. Taxol induces
paraptosis independent of both protein synthesis and MAPK
pathway. J. Cell. Physiol. 2010, 222, 421-432.
(14) Yoon, M. J,; Kang, Y. J.; Lee, J. A.; I Kim, . Y. M.; Kim, A.;
Lee, Y. S.; Park, J. H.; Lee, B. Y.; Kim, I. A.; Kim, H. S.; Kim, S.
A.; Yoon, A. R.; Yun, C. O.; Kim, E. Y.; Lee, K.; Choi, K. S.
Stronger proteasomal inhibition and higher CHOP induction are
responsible for more effective induction of paraptosis by
ACS Paragon Plus Environment