Organometallics
Article
was obtained cooling a toluene solution to −30 °C and then layering
pentane on top to diffuse in to yield single crystals suitable for X-ray
analysis (vide infra). Due to its instability, larger amounts of crystalline
material suitable for further analysis of 6 could not be obtained by this
procedure.
REFERENCES
■
(1) Sustainable Industrial Chemistry. Principles, Tools and Industrial
Examples; Cavani, F., Centi, G., Perathoner, S., Trifiro, F., Eds.; Wiley-
VCH: Weinheim, Germany, 2009.
(2) Romanowski, F.; Klenk, H. Thiocyanates and Isothiocyanates. In
Ulmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim,
Germany, 2005.
(3) (a) Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1880, 13, 1349−1352.
(b) Fava, A. In The Chemistry of Organic Sulfur Compounds; Kharasch,
N., Meyers, C. Y., Eds.; Pergamon Press: New York, 1966; Vol. 2, pp
73−91.
(4) Dyer, E.; Johnson, T. B. J. Am. Chem. Soc. 1932, 54, 777−787.
(5) See, for instance: (a) Moore, M. L.; Crossley, F. S. Methyl
Isothiocyanate. Org. Synth. 1941, 599. (b) Hodgkins, J. E.; Reeves, W.
P. J. Org. Chem. 1964, 29, 3098−3099. (c) L’Abbe, G. Synthesis 1987,
1987, 525−531. (d) Zhang, X.; Lee, Y. K.; Kelley, J. A.; Burke, T. R., Jr.
J. Org. Chem. 2000, 65, 6237−6240. (e) Wong, R.; Dolman, S. J. J. Org.
Chem. 2007, 72, 3969−3971. (f) Li, Z.-Y.; Ma, H.-Z.; Han, C.; Xi, H.-
T.; Meng, Q.; Chen, X.; Sun, X.-Q. Synthesis 2013, 45, 1667−1674.
(6) (a) Meyer, B. Chem. Rev. 1976, 76, 367−388. (b) Nehb, W.;
Vydra, K. Sulfur. In Ulmann’s Encyclopedia of Industrial Chemistry;
Wiley-VCH: Weinheim, Germany, 2006. (c) Kutney, G. Sulfur:
History, Technology, Applications & Industry, 2nd ed.; ChemTec
Publications: Toronto, 2013. (d) Donahue, J. P. Chem. Rev. 2006,
106, 4747−4783.
(7) (a) Zhu, Q.; Wegener, S. L.; Xie, C.; Uche, O.; Neurock, M.;
Marks, T. J. Nat. Chem. 2013, 5, 104−109. (b) Peter, M.; Marks, T. J.
J. Am. Chem. Soc. 2015, 137, 15234−15240.
(8) For reviews of transition-metal-catalyzed processes involving
isonitriles, see: (a) Chakrabarty, S.; Choudhary, S.; Doshi, A.; Liu, F.-
Q.; Mohan, R.; Ravindra, M. P.; Shah, D.; Yang, X.; Fleming, F. F. Adv.
Synth. Catal. 2014, 356, 2135−2196. (b) Boyarskiy, V. P.; Bokach, N.
A.; Luzyanin, K. V.; Kukushkin, V. Y. Chem. Rev. 2015, 115, 2698−
2779.
(9) For reviews of transition-metal-catalyzed SAT processes, see:
(a) Adam, W.; Bargon, R. M. Chem. Rev. 2004, 104, 251−261.
(b) Arisawa, M.; Yamaguchi, M. Pure Appl. Chem. 2008, 80, 993−
1003.
(10) For examples of non-metal-catalyzed SAT processes employing
S8, see: (a) Nguyen, T. B.; Ermolenko, L.; Dean, W. A.; Al-Mourabit,
A. Org. Lett. 2012, 14, 5948−5951. (b) Nguyen, T. B.; Ermolenko, L.;
Al-Mourabit, A. Org. Lett. 2012, 14, 4274−4277. (c) Nguyen, T. B.;
Tran, M. Q.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2014, 16, 310−
313. (d) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Synthesis 2014,
46, 3172−3179.
(11) For transition-metal-catalyzed syntheses of ITCs using S8 and
RNC, see: (a) Adam, W.; Bargon, R. M.; Bosio, S. G.; Schenk, W. A.;
Stalke, D. J. Org. Chem. 2002, 67, 7037−7041. (c) Arisawa, M.;
Ashikawa, M.; Suwa, A.; Yamaguchi, M. Tetrahedron Lett. 2005, 46,
1727−1729.
Cp*Mo[N(iPr)C(Ph)N(iPr)](κ-(S,S)-S2CNtBu) (8). To a solution of
4 (0.042 g, 0.05 mmol) in 10 mL of toluene in a 100 mL Schlenk tube
was added tert-butyl isothiocyanate (0.06 mL, 0.47 mmol). The tube
was sealed, and the solution was stirred at 65 °C for 3 days, at which
point volatiles were removed in vacuo. The resulting orange-red oil
was extracted in pentane, filtered through Celite, concentrated, and
cooled to −30 °C to yield orange-red crystals of 8 (0.028 g, 52%
yield). Data for 8 are as follows. Anal. Calcd for C28H43N3S2Mo: C,
1
57.81; N, 7.23; H, 7.46. Found: C, 58.17; N, 7.29; H, 7.39. H NMR
(400 MHz, benzene-d6): 0.93 [3H, d, J = 6.4 Hz, CH(CH3)2], 0.95
[3H, d, J = 6.4 Hz, CH(CH3)2], 1.27 [3H, d, J = 6.4 Hz, CH(CH3)2],
1.27 [3H, d, J = 6.4 Hz, CH(CH3)2], 1.83 [15H, s, C5(CH3)5], 1.84
[9H, s, S2CNC(CH3)3], 3.37 [1H, sp, J = 6.4 Hz, CH(CH3)2], 3.38
[1H, sp, J = 6.4 Hz, CH(CH3)2], 6.94 (4H, m, C6H5), 7.11 (1H, m,
C6H5).
Variable-Temperature NMR Experiments. A representative
procedure is given. In a J. Young NMR tube equipped with a Teflon
valve was added 0.6 mL of benzene-d6 solution consisting of 2
(prepared in situ) (8.6 mM, 5 μmol), tert-butyl isonitrile (171.6 mM,
103 μmol), and durene internal standard (35.9 mM, 22 μmol). S8
(0.026 g, 102 μmol) was added, and the tube was quickly placed into
the NMR probe, which was pre-equilibrated to 50 °C. NMR spectra
were recorded every 10 min until all tert-butyl isonitrile was consumed.
The concentration of tert-butyl isothiocyanate was plotted versus time
and fit with a first-order polynomial, affording the initial rate constant
as the slope.
Synthesis of Thiosemicarbazides through “On-Demand”
Generation of Isothiocyanates. A representative procedure is
given. In 3 mL of THF, 2 (8 μmol) was generated in situ through
addition of 44 equiv of tert-butyl isonitrile (20 μL, 0.177 μmol) with
respect to to 4 (0.004 g, 0.004 μmol). After 30 min, excess S8 (0.040 g,
0.155 μmol) and p-tolylbenzhydrazide (0.020 g, 0.131 μmol) were
added with an additional 5 mL of THF. The solution was heated to 85
°C in a sealed Schlenk tube for 16 h, after which volatiles were
removed in vacuo. The organic product was extracted into ethyl
acetate and then washed with 1 M HCl and 1 M KCl. The organic
layer was isolated and passed through a pad of silica gel supported by a
Kimwipe within a glass pipet. Volatiles were removed in vacuo to
furnish 1-(p-tolylbenzoyl)-4-tert-butylthiosemicarbazide as brown
crystals (0.032 g, 97% yield). Characterization (1H NMR, 13C{1H}
NMR, and ESI-MS) data and yields are provided in the Supporting
ASSOCIATED CONTENT
* Supporting Information
■
S
(12) For non-metal-catalyzed syntheses of ITCs using S8 and RNC,
see: (a) Fujiwara, S.; Shin-Ike, T. Tetrahedron Lett. 1991, 32, 3503−
3506. (b) Nishikawa, K.; Umezawa, T.; Garson, M. J.; Matsuda, F. J.
Nat. Prod. 2012, 75, 2232−2235.
The Supporting Information is available free of charge on the
Supporting spectra, characterization data, and crystal data
Crystallographic data (CIF)
(13) Yonke, B. L.; Reeds, J. P.; Zavalij, P. Y.; Sita, L. R. Angew. Chem.,
Int. Ed. 2011, 50, 12342−12346.
(14) Reeds, J. P.; Yonke, B. L.; Zavalij, P. Y.; Sita, L. R. J. Am. Chem.
Soc. 2011, 133, 18602−18605.
(15) Yonke, B. L.; Reeds, J. P.; Fontaine, P. P.; Zavalij, P. Y.; Sita, L.
R. Organometallics 2014, 33, 3239−3242.
AUTHOR INFORMATION
Corresponding Author
■
(16) Farrell, W. S.; Zavalij, P. Y.; Sita, L. R. Angew. Chem., Int. Ed.
2015, 54, 4269−4273.
(17) Mukerjee, A. K.; Ashare, R. Chem. Rev. 1991, 91, 1−24.
(18) Fontaine, P. P.; Yonke, B. L.; Zavalij, P. Y.; Sita, L. R. J. Am.
Chem. Soc. 2010, 132, 12273−12285.
Notes
The authors declare no competing financial interest.
(20) (a) Pombeiro, A. J. L.; Chatt, J.; Richards, R. L. J. Organomet.
Chem. 1980, 190, 297−304. (b) Morsing, T. J.; Bendix, J. J. Mol. Struct.
2013, 1039, 107−112.
ACKNOWLEDGMENTS
We thank the National Science Foundation (CHE-1361716)
for financial support of this work.
■
E
Organometallics XXXX, XXX, XXX−XXX