Page 5 of 8
Journal of the American Chemical Society
(2) (a) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Transition-
(9) (a) Ye, B.; Cramer, N. Chiral Cyclopentadienyls: Enabling Ligands for
Asymmetric Rh(III)-Catalyzed C–H Functionalizations. Acc. Chem. Res.
2015, 48, 1308-1318; (b) Engle, K. M.; Yu, J.-Q. Developing Ligands for
Palladium(II)-Catalyzed C–H Functionalization: Intimate Dialogue
between Ligand and Substrate. J. Org. Chem. 2013, 78, 8927-8955.
(10) (a) Hu, L.; Shen, P.-X.; Shao, Q.; Hong, K.; Qiao, J.-X.; Yu, J.-Q. PdII-
Metal-Catalyzed C–H Alkylation Using Alkenes. Chem. Rev. 2017, 117,
9333-9403; (b) Shang, R.; Ilies, L.; Nakamura, E. Iron-Catalyzed C–H
Bond Activation. Chem. Rev. 2017, 117, 9086-9139; (c) Kim, D. S.; Park,
W. J.; Jun, C. H. Metal-Organic Cooperative Catalysis in C–H and C–C
Bond Activation. Chem. Rev. 2017, 117, 8977-9015; (d) Shi, X.-Y.; Han,
W.-J.; Li, C.-J. Transition-Metal-Catalyzed Direct Addition of Aryl C–H
Bonds to Unsaturated Electrophiles. Chem. Rec. 2016, 1178-1190; (e)
Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G. Transition Metal-
Catalyzed Ketone-Directed or Mediated C–H Functionalization. Chem.
Soc. Rev. 2015, 44, 7764-7786; (f) Sauermann, N.; Meyer, T. H.; Qiu, Y.;
Ackermann, L. Electrocatalytic C–H Activation. ACS Catal. 2018, 8, 7086-
7103; (g) Cheng, C.; Hartwig, J. F. Catalytic Silylation of Unactivated C–
H Bonds. Chem. Rev. 2015, 115, 8946-8975; (h) Mkhalid, I. A. I.; Barnard,
J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. C–H Activation for the
Construction of C–B Bonds. Chem. Rev. 2010, 110, 890-931; (i) Lee, D. H.;
Kwon, K. H.; Yi, C. S. Selective Catalytic C–H Alkylation of Alkenes with
Alcohols. Science 2011, 333, 1613-1616; (j) Davies, H. M. L.; Manning, J.
R. Catalytic C–H Functionalization by Metal Carbenoid and Nitrenoid
Insertion. Nature 2008, 451, 417-424.
(3) (a) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Palladium-
Catalyzed Transformations of Alkyl C–H Activation. Chem. Rev. 2017,
117, 8754-8786; (b) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Weak
Coordination as a Powerful Means for Developing Broadly Useful C–H
Functionalization Reactions. Acc. Chem. Res. 2012, 45, 788-802; (c) Lyons,
T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-Directed C–H
Functionalization Reactions. Chem. Rev. 2010, 110, 1147-1169; (d)
Ackermann, L. Carboxylate-Assisted Transition-Metal-Catalyzed C−H
Bond Functionalizations: Mechanism and Scope. Chem. Rev. 2011, 111,
1315-1345; (e) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q.
1
2
3
4
5
6
7
8
Catalyzed
Enantioselective
C(sp3)−H
Activation/Cross-Coupling
Reactions of Free Carboxylic Acids. Angew. Chem. Int. Ed. 2019, 58, 2134-
2138; (b) Wu, Q.-F.; Wang, X.-B.; Shen, P.-X.; Yu, J.-Q. Enantioselective
C–H Arylation and Vinylation of Cyclobutyl Carboxylic Amides. ACS
Catal. 2018, 8, 2577-2581; (c) Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu,
J.-Q. Pd(II)-Catalyzed Enantioselective C(sp3)–H Arylation of Free
Carboxylic Acids. J. Am. Chem. Soc. 2018, 140, 6545-6549; (d) Shao, Q.;
Wu, Q.-F.; He, J.; Yu, J.-Q. Enantioselective γ-C(sp3)-H Activation of
Alkyl Amines via Pd(II)/Pd(0) Catalysis. J. Am. Chem. Soc. 2018, 140,
5322-5325; (e) Park, H.; Verma, P.; Hong, K.; Yu, J.-Q. Controlling Pd(IV)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Reductive
Elimination
Pathways
Enables
Pd(II)-Catalysed
Enantioselective C(sp3)–H Fluorination. Nat. Chem. 2018, 10, 755-762; (f)
Wu, Q.-F.; Shen, P.-X.; He, J.; Wang, X.-B.; Zhang, F.; Shao, Q.; Zhu, R.-
Y.; Mapelli, C.; Qiao, J.-X.; Poss, M. A.; Yu, J.-Q. Formation of α-Chiral
Centers by Asymmetric β-C(sp3)–H Arylation, Alkenylation, and
Alkynylation. Science 2017, 355, 499-503; (g) Chen, G.; Gong, W.;
Zhuang, Z.; Andrä, M. S.; Chen, Y.-Q.; Hong, X.; Yang, Y.-F.; Liu, T.;
Houk, K. N.; Yu, J.-Q. Ligand-Accelerated Enantioselective Methylene
C(sp3)–H Bond Activation. Science 2016, 353, 1023-1027.
(11) (a) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Organic
Chemistry: Functionalization of C(sp3)–H Bonds Using a Transient
Directing Group. Science 2016, 351, 252-256; (b) Zhang, S.; Yao, Q.-J.;
Liao, G.; Li, X.; Li, H.; Chen, H.-M.; Hong, X.; Shi, B.-F. Enantioselective
Synthesis of Atropisomers Featuring Pentatomic Heteroaromatics by Pd-
Catalyzed C–H Alkynylation. ACS Catal. 2019, 9, 1956-1961; (c) Liao, G.;
Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D.-Y.; Shi, B.-F. Scalable,
Stereocontrolled Formal Syntheses of (+)-Isoschizandrin and (+)-
Steganone: Development and Applications of Palladium(II)-Catalyzed
Atroposelective C−H Alkynylation. Angew. Chem. Int. Ed. 2018, 57, 3661-
3665; (d) Liao, G.; Li, B.; Chen, H.-M.; Yao, Q.-J.; Xia, Y.-N.; Luo, J.; Shi,
B.-F. Pd-Catalyzed Atroposelective C−H Allylation through β-O
Elimination: Diverse Synthesis of Axially Chiral Biaryls. Angew. Chem.
Int. Ed. 2018, 57, 17151-17155; (e) Yao, Q.-J.; Zhang, S.; Zhan, B.-B.; Shi,
B.-F. Atroposelective Synthesis of Axially Chiral Biaryls by Palladium-
Catalyzed Asymmetric C−H Olefination Enabled by a Transient Chiral
Auxiliary. Angew. Chem. Int. Ed. 2017, 56, 6617-6621.
Transition
Metal-Catalyzed
C–H
Activation
Reactions:
Diastereoselectivity and Enantioselectivity. Chem. Soc. Rev. 2009, 38,
3242-3272.
(4) (a) Shilov, A. E.; Shul'pin, G. B. Activation of C−H Bonds by Metal
Complexes. Chem. Rev. 1997, 97, 2879-2932; (b) Hartwig, J. F. Carbon–
Heteroatom Bond Formation Catalysed by Organometallic Complexes.
Nature 2008, 455, 314; (c) Kakiuchi, F.; Murai, S. Catalytic C−H/Olefin
Coupling. Acc. Chem. Res. 2002, 35, 826-834.
(5) (a) Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q.
Enantioselective C(sp3)–H Bond Activation by Chiral Transition Metal
Catalysts. Science 2018, 359; (b) Yang, Y.-F.; Hong, X.; Yu, J.-Q.; Houk,
K. N. Experimental-Computational Synergy for Selective Pd(II)-Catalyzed
C-H Activation of Aryl and Alkyl Groups. Acc. Chem. Res. 2017, 50, 2853-
2860.
(6) (a) Duarah, G.; Kaishap, P. P.; Begum, T.; Gogoi, S. Recent Advances
in Ruthenium(II)-Catalyzed C−H Bond Activation and Alkyne Annulation
Reactions. Adv. Synth. Catal. 2019, 361, 654-672; (b) Shan, C.; Zhu, L.;
Qu, L.-B.; Bai, R.; Lan, Y. Mechanistic View of Ru-Catalyzed C–H Bond
Activation and Functionalization: Computational Advances. Chem. Soc.
Rev. 2018, 47, 7552-7576; (c) Nareddy, P.; Jordan, F.; Szostak, M. Recent
Developments in Ruthenium-Catalyzed C–H Arylation: Array of
Mechanistic Manifolds. ACS Catal. 2017, 7, 5721-5745; (d) Leitch, J. A.;
Frost, C. G. Ruthenium-Catalysed σ-Activation for Remote: Meta -
Selective C–H Functionalisation. Chem. Soc. Rev. 2017, 46, 7145-7153; (e)
Ackermann, L. Carboxylate-Assisted Ruthenium-Catalyzed Alkyne
Annulations by C–H/Het–H Bond Functionalizations. Acc. Chem. Res.
2014, 47, 281-295; (f) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H.
Ruthenium(II)-Catalyzed C–H Bond Activation and Functionalization.
Chem. Rev. 2012, 112, 5879-5918; (g) DeꢀSarkar, S.; Liu, W.; Kozhushkov,
S. I.; Ackermann, L. Weakly Coordinating Directing Groups for
Ruthenium(II)-Catalyzed C–H Activation. Adv. Synth. Catal. 2014, 356,
1461-1479.
(7) (a) Peneau, A.; Guillou, C.; Chabaud, L. Recent Advances in [Cp*MIII]
(M = Co, Rh, Ir)-Catalyzed Intramolecular Annulation Through C–H
Activation. Eur. J. Org. Chem. 2018, 2018, 5777-5794; (b) Colby, D. A.;
Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Rhodium Catalyzed Chelation-
Assisted C–H Bond Functionalization Reactions. Acc. Chem. Res. 2012, 45,
814-825; (c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Rhodium-
Catalyzed C−C Bond Formation via Heteroatom-Directed C−H Bond
Activation. Chem. Rev. 2010, 110, 624-655.
(12) Shi, H.; Herron, A. N.; Shao, Y.; Shao, Q.; Yu, J.-Q. Enantioselective
Remote Meta-C–H Arylation and Alkylation via a Chiral Transient
Mediator. Nature 2018, 558, 581-585.
(13) Ye, B.; Cramer, N. Chiral Cyclopentadienyl Ligands as
Stereocontrolling Element in Asymmetric C–H Functionalization. Science
2012, 338, 504-506.
(14) Hyster, T. K.; Knörr, L.; Ward, T. R.; Rovis, T. Biotinylated Rh(III)
Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H
Activation. Science 2012, 338, 500-503.
(15) (a) Audic, B.; Wodrich, M. D.; Cramer, N. Mild Complexation
Protocol for Chiral CpxRh and Ir Complexes Suitable for in Situ Catalysis.
Chem. Sci. 2019, 10, 781-787; (b) Wang, S.-G.; Cramer, N. An
Enantioselective CpxRh(III)-Catalyzed C−H Functionalization/Ring-
Opening Route to Chiral Cyclopentenylamines. Angew. Chem. Int. Ed.
2019, 58, 2514-2518; (c) Tian, M.; Bai, D.; Zheng, G.; Chang, J.; Li, X.
Rh(III)-Catalyzed Asymmetric Synthesis of Axially Chiral Biindolyls by
Merging C–H Activation and Nucleophilic Cyclization. J. Am. Chem. Soc.
2019, 141, 9527-9532; (d) Li, G.; Jiang, J.; Xie, H.; Wang, J. Introducing
the Chiral Transient Directing Group Strategy to Rhodium(III)-Catalyzed
Asymmetric C−H Activation. Chem. Eur. J. 2019, 25, 4688-4694; (e) Sun,
Y.; Cramer, N. Tailored Trisubstituted Chiral CpxRhIII Catalysts for
Kinetic Resolutions of Phosphinic Amides. Chem. Sci. 2018, 9, 2981-2985;
(f) Sun, Y.; Cramer, N. Enantioselective Synthesis of Chiral-at-Sulfur 1,2-
Benzothiazines by CpxRhIII-Catalyzed C−H Functionalization of
Sulfoximines. Angew. Chem. Int. Ed. 2018, 57, 15539-15543; (g) Shen, B.;
Wan, B.; Li, X. Enantiodivergent Desymmetrization in the Rhodium(III)-
Catalyzed Annulation of Sulfoximines with Diazo Compounds. Angew.
Chem. Int. Ed. 2018, 57, 15534-15538; (h) Satake, S.; Kurihara, T.;
Nishikawa, K.; Mochizuki, T.; Hatano, M.; Ishihara, K.; Yoshino, T.;
Matsunaga, S. Pentamethylcyclopentadienyl Rhodium(III)–Chiral
Disulfonate Hybrid Catalysis for Enantioselective C–H Bond
Functionalization. Nat. Catal. 2018, 1, 585-591; (i) Lin, L.; Fukagawa, S.;
Sekine, D.; Tomita, E.; Yoshino, T.; Matsunaga, S. Chiral Carboxylic Acid
(8) (a) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.;
Ackermann, L. 3d Transition Metals for C–H Activation. Chem. Rev. 2018,
119, 2192-2452; (b) Pan, S.; Shibata, T. Recent Advances in Iridium-
Catalyzed Alkylation of C–H and N–H Bonds. ACS Catal. 2013, 3, 704-
712.
ACS Paragon Plus Environment