5798
T. Narender et al. / Tetrahedron Letters 52 (2011) 5794–5798
4. Chen, M.; Zhai, L.; Christensen, S. B.; Theander, T. G.; Kharazmi, A. Antimicrob.
Agents Chemother. 2001, 45, 2023–2029.
32. Representative procedure for the synthesis of, chalcones 3a, 5a and bischalcone 4a.
To solution of 1-(5-acetyl-2-hydroxy-phenyl)-ethanone (1) (200 mg,
a
5. Xia, Y.; Yang, Z.-Y.; Xia, P.; Bastow, K. F.; Nakanishi, Y.; Lee, K.-H. Bioorg. Med.
Chem. Lett. 2000, 10, 699–701; Bois, F.; Beney, C.; Boumendjel, A.; Mariotte, A.
M.; Conseil, G.; DiPietro, A. J. Med. Chem. 1998, 41, 4161–4164.
6. Hsieh, H.-K.; Tsao, L.-T.; Wang, J.-P. J. Pharm. Pharmacol. 2000, 52, 163–171;
Hsieh, H.-K.; Lee, T.-H.; Wang, J.-P.; Wang, J.-J.; Lin, C.-N. Pharm. Res. 1998, 15,
1.12 mmol) in aqueous potassium hydroxide (2 pellets) in ethanol (5 mL)
was added the 4-(dimethylamino)benzaldehyde (2a) (167 mg, 1.12 mmol). The
whole reaction mixture was kept at room temperature for 24 h. After it was
quenched in ice-cold water, and acidified with 1 N HCl. The crude product was
extracted with ethyl acetate (3 x 50 mL), washed with brine solution and the
combined organic layer was concentrated under reduced pressure. The crude
product was subjected to silica gel column chromatography using mixture of
hexane-ethyl acetate (95:5 to 90:10) as a mobile phase to afford chalcones 3a
(150 mg, 43%), 5a (50 mg, 14%), and bischalcone 4a (80 mg, 16%).
´
39–44; Herencia, F.; Ferra´ndiz, M. L.; Ubeda, A.; Domınguez, J. N.; Charris, J. E.;
Lobo, G. M.; Alcaraz, M. J. Bioorg. Med. Chem. Lett. 1998, 8, 1169–1174.
7. Ducki, S.; Forrest, R.; Hadfield, J. A.; Kendall, A.; Lawrence, N. J.; McGown, A. T.;
Rennison, D. Bioorg. Med. Chem. Lett. 1998, 8, 1051–1056.
8. Lin, L.-M.; Zhou, Y.; Flavin, M. T.; Zhou, L.-M.; Nie, W.; Chen, F.-C. Bioorg. Med.
Chem. 2002, 10, 2795–2798.
9. Furman, C.; Lebeau, J.; Fruchart, J.-C.; Bernier, J.-L.; Duriez, P.; Cotelle, N.;
Teissier, E. J. Biochem. Mol. Toxicol. 2001, 15, 270–278.
10. Park, E. J.; Park, R.; Lee, J. S.; Kim, J. Planta Med. 1998, 64, 464–466.
Compound 3a:1H NMR (300 MHz, CDCl3) d 13.89 (s, 1H), 8.65 (d, J = 2.1 Hz, 1H),
8.08 (dd, J = 1.4 Hz, 8.7 Hz, 1H), 7.97 (d, J = 15.0 Hz, 1H), 7.66 (d, J = 7.8 Hz, 2H),
7.56 (d, J = 15.0 Hz, 1H), 7.07 (d, J = 8.7 Hz, H), 6.75 (d, J = 7.8 Hz, 2H), 3.10 (s,
6H), 2.40 (s, 3H); MS (ESI) m/z 310 (M+H)+.
Compound 4a:1H NMR (300 MHz, CDCl3) d 13.79 (s, 1H), 8.71 (d, J = 2.7 Hz, 1H),
8.16 (dd, J = J = 1.0 Hz, 8.7 Hz, 1H), 7.94 (d, J = 16.7 Hz, 1H), 7.88 (d, J = 15.1 Hz,
2H), 7.64 (m, 5H), 7.55 (d, J = 15.1 Hz, 1H), 7.09 (d, J = 13 Hz, 2H), 6.73 (d,
J = 13 Hz, 4H), 3.08 (s, 6H), 3.05 (s, 6H); MS (ESI) m/z 441 (M+H)+.
´
11. Rojas, J.; Paya, M.; Domınguez, J. N.; Luisa Ferrandiz, M. Bioorg. Med. Chem. Lett.
2002, 12, 1951–1954; Herencia, F.; Ferrandiz, M. L.; Ubeda, A.; Guillen, I.;
´
Domınguez, J. N.; Charris, J. E.; Lobo, G. M.; Alcaraz, M. J. Free Radical Biol. Med.
2001, 30, 43–50.
Compound 5a:1H NMR (300 MHz, CDCl3) d 12.66 (s, 1H), 8.53 (d, J = 2.7 Hz, 1H),
8.20 (dd, J = 2.0 Hz, 8.8 Hz, 1H); 7.87 (d, J = 15.3 Hz, 1H), 7.60 (m, 2H), 7.35 (d,
J = 15.3 Hz, 1H), 7.09 (d, J = 8.7 Hz, 1H), 6.74 (d, J = 8.8 Hz, 2H), 3.07 (s, 6H), 2.76
(s, 3H); MS (ESI) m/z 310 (M+H)+.
12. Satyanarayana, M.; Tiwari, P.; Tripathi, B. K.; Srivastava, A. K.; Pratap, R. Bioorg.
Med. Chem. 2004, 12, 883–886.
13. Lawrence, N. J.; Renninson, D.; McGown, A. T.; Ducki, S.; Gul, L. A.; Hadfield, J.
A.; Khan, N. J. Comb. Chem. 2001, 3, 421–426; Nielsen, S. F.; Christensen, S. B.;
Cruciani, G.; Kharazmi, A.; Liljefors, T. J. Med. Chem. 1998, 41, 4819–4832;
Dimmock, J. R.; Kandepu, N. M.; Hetherington, M.; Quail, J. W.; Pugazhenthi, U.;
Sudom, A. M.; Chamankhah, M.; Rose, P.; Pass, E.; Allen, T. M.; Halleran, S.;
Szydlowski, J.; Mutus, B.; Tannous, M.; Manavathu, E. K.; Myers, T. G.; Clercq, E.
D.; Balzarini, J. J. Med. Chem. 1998, 41, 1014–1026; Li, R.; Kenyon, G. L.; Cohen,
F. E.; Chen, X.; Gong, B.; Dominguez, J. N.; Davidson, E.; Kurzban, G.; Miller, R.
E.; Nuzum, E. O.; Rosenthal, P. J.; McKerrow, J. H. J. Med. Chem. 1995, 38, 5031–
5037; Edwards, M. L.; Stemerick, D. M.; Sunkara, P. S. J. Med. Chem. 1990, 33,
1948–1954.
33. Representative procedure for the synthesis of acylatedchalcone 3a. To a stirred
solution of 1 (100 mg, 0.56 mmol) and 4-(dimethylamino)benzaldehyde (2a)
(83 mg, 0.56 mmol) in dry 1,4 dioxane was added gradually BF3ꢀOEt2
(0.142 mL, 1.12 mmol) at room temperature. The whole reaction mixture
was stirred for 24 h. The reaction mixture was then diluted with ethyl acetate
(100 mL) and washed with water (3 x 25 mL) to decompose the BF3ꢀOEt2
complex. The organic solution obtained after extraction was dried over anhyd.
Na2SO4, filtered and the solvent was evaporated under reduced pressure. The
crude product was purified by silica gel column chromatography using hexane-
ethyl acetate (93:7) as a mobile phase to afford 3a. (140 mg, 80%), 1H NMR
(300 MHz, CDCl3) d 13.89 (s, 1H), 8.65 (d, J = 2.1 Hz, 1H), 8.08 (dd, J = 1.4 Hz,
8.7 Hz, 1H), 7.97 (d, J = 15.0 Hz, 1H), 7.66 (d, J = 7.8 Hz, 2H), 7.56 (d, J = 15.0 Hz,
1H), 7.07 (d, J = 8.7 Hz, 1H), 6.75 (d, J = 7.8 Hz, 2H), 3.10 (s, 6H), 2.40 (s, 3H); MS
(ESI) m/z 310 (M+H)+.
34. General procedure for the synthesis of coumarin-chalcone hybrid 6. A mixture of
acetylated chalcone 3c (100 mg, 0.35 mmol), p-chlorophenylacetic acid
(182 mg, 0.35 mmol), acetic anhydride (3 mL), and TEA (1.2 mL) was refluxed
for 16 h, then cooled to room temperature and poured on to ice-water. The
separated solid was filtered, washed successively with aq. sodium bicarbonate,
water and crystallized from methanol to obtain the desired compound 6
(95 mg, 65%). 1H NMR (300 MHz, CDCl3) d 8.39 (s, 1H), 8.23 (d, J = 8.4 Hz, 1H),
7.90 (d, J = 15.6 Hz, 1H), 7.60 (d, J = 15.6 Hz, 1H), 7.56 (m, 2H), 7.47 (m, 3H),
7.25 (m, 4H), 2.43 (s, 6H);); 13C (50Mz, CDCl3) d 188.3, 160.3, 155.5, 148.2,
146.2, 141.9, 134.8, 132.6, 132.1, 131.7 (4C), 130.9 (2C), 129.1 (3C), 128.9 (2C),
126.5, 120.8, 120.4, 117.3, 21.8, 17.0; MS (ESI) m/z 415 (M+H)+.
35. General procedure for the synthesis of benzofuran-chalcone hybrid 7. A mixture of
p-methoxyphenacyl bromide (81 mg, 0.35 mmol), acetylated chalcone 3c
(100 mg, 0.35 mmol) and K2CO3 (49 mg, 0.35 mmol) was taken up in 5 mL of
acetonitrile (CH3CN) and stirred continuously. The heterogeneous mixture was
heated at reflux for 3 h under atmosphere of N2 until the transformation was
complete (TLC). After the heat source was removed, 20 mL of water was added,
and the reaction mixture was allowed to cool to ambient temperature. The
mixture was filtered, washed with H2O/CH3CN; 2:1, CH3CN and then dried to
give desired compound 7 in (105 mg, 72%), 1H NMR (300 MHz, CDCl3) d 8.41 (s,
1H), 8.23 (m, 3H), 7.90 (d, J = 15.6 Hz, 1H), 7.64 (d, J = 15.6 Hz, 1H), 7.62 (m, 3H),
7.25 (d, J = 6.9 Hz, 2H), 7.06 (d, J = 8.8 Hz, 2H), 3.93 (s, 3H), 2.74 (s, 3H), 2.43 (s,
3H); 13C NMR (75 MHz, CDCl3) d 189.4, 184.3, 163.8, 156.6, 150.1, 145.4, 141.5,
134.5, 132.6 (2C), 132.4, 130.5, 129.7 (2C), 128.8, 128.7 (2C), 128.4, 126.7, 123.0
121.2, 114.0 (2C), 112.6, 55.8, 21.8, 10.3; MS (ESI) m/z 411 (M+H)+.
14. Bu, X.; Zhao, L.; Li, Y. Synthesis 1997, 1246–1248; Bu, X.; Li, Y. J. Nat. Prod. 1996,
59, 968–969.
15. Sathyanarayana, S.; Krishnamurthy, H. G. Curr. Sci. 1988, 57, 1114–1116;
Alcantara, A. R.; Marinas, J. M.; Sinisterra, J. V. Tetrahedron Lett. 1987, 28, 1515–
1518; Sinisterra, J. V.; Garcia-Raso, A. Synthesis 1984, 502–508.
16. Climent, M. J.; Corma, A.; Iborra, S.; Primo, J. J. Catal. 1995, 151, 60–66.
17. Daskiewicz, J. B.; Comte, G.; Barron, D.; Pietro, A. D.; Thomasson, F. Tetrahedron
Lett. 1999, 40, 7095–7098.
18. Sebti, S.; Solhy, A.; Tahir, R.; Boulaajaj, S.; Mayoral, J. A.; Fraile, J. M.; Kossir, A.;
Oumimoun, H. Tetrahedron Lett. 2001, 42, 7953–7955; Sebti, S.; Solhy, A.;
Smahi, A.; Kossir, A.; Oumimoun, H. Catal. Commun. 2002, 3, 335–339.
19. Calloway, N. O.; Green, L. D. J. Am. Chem. Soc. 1937, 59, 809–811.
20. Sz’ell, T.; Soha´r, I. Can. J. Chem. 1969, 47, 1254–1258; Sipos, G.; Sirokman, F.
Nature 1964, 202, 489–490.
21. Irie, K.; Watanabe, K. Bull. Chem. Soc. Jpn. 1980, 53, 1366–1371.
22. Mazza, L.; Guaram, A. Synthesis 1980, 41–44.
23. Nakano, T.; Irifune, S.; Umano, S.; Inada, A.; Ishii, Y.; Ogawa, M. J. Org. Chem.
1987, 52, 2239–2244.
24. Iranpoor, N.; Kazemi, F. Tetrahedron 1998, 54, 9475–9480.
25. Narender, T.; Reddy, K. P. Tetrahedron Lett. 2007, 48, 3177–3180.
26. Narender, T.; Reddy, K. P.; Madhur, G. Synthesis 2009, 22, 3791–3796.
27. Narender, T.; Reddy, K. P.; Kumar, B. Tetrahedron Lett. 2008, 4, 4409–4415.
28. Narender, T.; Reddy, K. P. Tetrahedron Lett. 2007, 48, 7628–7632.
29. Narender, T.; Reddy, K. P.; Shweta; Srivastava, K.; Mishra, D. K.; Puri, S. K. Org.
Lett. 2007, 9, 5369–5372.
30. Narender, T.; Shweta; Gupta, S. Bioorg. Med. Chem. Lett. 2004, 14, 3913–3916;
Narender, T.; Khaliq, T.; Shweta; Nishi; Goyal, N.; Gupta, S. Bioorg. Med. Chem.
2005, 13, 6543–6550.
31. Naresh, K. S.; Braham, S. V.; Kuldip, S. D. Indian J. Chem. Sect. B: Org. Chem. Incl.
Med. Chem. 1986, 25, 672–674.