Organic Letters
Letter
(l) Wender, P. A.; Erhardt, L. M.; Letendre, L. J. J. Am. Chem. Soc.
1981, 103, 2114−2116. (m) Ireland, R. E.; Marshall, J. A. J. Org. Chem.
1962, 27, 1615−1619.
group is projected to the pseudoequatorial space with a
perpendicular angle to the cyclohexenyl ring by the steric
reason. Among these models, the severe steric repulsion is
conceived between the Ph group and Cu−Ph that approaches
the olefin from the α side to form the π complex, thus
disfavoring TS-B. Consequently, TS-A is the predominant
pathway to produce (Z)-en-11aC. This consideration is
consistent with the fact that the present substitution selectively
afforded 11 with the trans stereochemistry between the R and
Ar (Table 2). Thus, stereodefined construction of the chirality
on the α carbon possessing PyCO2 is unnecessary for the
purpose of this two-step synthesis of the 2,6-disubstituted
ketones in enantiomerically enriched form from en-2a.12
In summary, we developed a stereoselective method to
obtain trans-2,6-disubstituted cyclohexanones. Furthermore, we
clarified that (1) high anti-SN2′ selectivity is secured with the
Me group, and (2) the stereochemical course is definitely
dictated by the pre-existing chirality on the ring.13
(4) (a) Feng, C.; Kobayashi, Y. Eur. J. Org. Chem. 2013, 6666−6676.
(b) Feng, C.; Kobayashi, Y. J. Org. Chem. 2013, 78, 3755−3766.
(c) Wang, Q.; Kobayashi, Y. Org. Lett. 2011, 13, 6252−6255.
(d) Kaneko, Y.; Kiyotsuka, Y.; Acharya, H. P.; Kobayashi, Y. Chem.
Commun. 2010, 46, 5482−5484. (e) Hyodo, T.; Kiyotsuka, Y.;
Kobayashi, Y. Org. Lett. 2009, 11, 1103−1106. (f) Kiyotsuka, Y.;
Acharya, H. P.; Katayama, Y.; Hyodo, T.; Kobayashi, Y. Org. Lett.
2008, 10, 1719−1722. (g) Kiyotsuka, Y.; Katayama, Y.; Acharya, H. P.;
Hyodo, T.; Kobayashi, Y. J. Org. Chem. 2009, 74, 1939−1951.
(h) Kiyotsuka, Y.; Kobayashi, Y. J. Org. Chem. 2009, 74, 7489−7495.
(5) (a) Falciola, C. A.; Tissot-Croset, K.; Alexakis, A. Angew. Chem.,
Int. Ed. 2006, 45, 5995−5998. (b) Whittaker, A. M.; Rucker, R. P.;
Lalic, G. Org. Lett. 2010, 12, 3216−3218.
(6) (a) Gais, H.-J.; Muller, H.; Bund, J.; Scommoda, M.; Brandt, J.;
̈
Raabe, G. J. Am. Soc. Chem. 1995, 117, 2453−2466. (b) Flemming, S.;
Kabbara, J.; Nickisch, K.; Westermann, J.; Mohr, J. Synlett 1995, 183−
185.
(7) Soorukram, D.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45,
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and spectral data of compounds
described herein. This material is available free of charge via the
3686−3689.
■
(8) Christl, M.; Schreck, M.; Fischer, T.; Rudolph, M.; Moigno, D.;
Fischer, H.; Deuerlein, S.; Stalke, D. Chem.Eur. J. 2009, 15, 11256−
11265.
S
(9) Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986−
2012.
(10) The α regioselectivity observed with the cuprates (Table 1,
entries 3, 5, and 8) might stem in part from the increased
nucleophilicity of the reagents, which prefer reaction at less sterically
congested carbon.
AUTHOR INFORMATION
Corresponding Author
■
Notes
(11) Substitution of the diastereomer of en-2a is predictable on the
basis of the results of the substitutions using en-2a (Scheme 4) and 2a
(Table 1, entry 1).
The authors declare no competing financial interest.
(12) Allylic substitution of picolinate II (Ar = Bu, R2 = Me) with
PhCu afforded a mixture of the products, among which the desired
ACKNOWLEDGMENTS
1
■
SN2′ product was confirmed by H NMR spectroscopy.
This work was supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Science, Sports, and
Culture, Japan.
(13) Substitution of the cyclopentenyl picolinate corresponding to 2a
with PhCu·MgBr2 proceeded with 95% regioelectivity and 80%
stereoselectivity.
REFERENCES
■
(1) (a) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 1082−1146.
(b) Turner, T. C.; Shibayama, K.; Boger, D. L. Org. Lett. 2013, 15,
1100−1103. (c) Iwama, T.; Rawal, V. H. Org. Lett. 2006, 8, 5725−
5728. (d) MacKay, J. A.; Bishop, R. L.; Rawal, V. H. Org. Lett. 2005, 7,
3421−3424.
(2) (a) Miyoshi, T.; Miyakawa, T.; Ueda, M.; Miyata, O. Angew.
Chem., Int. Ed. 2011, 50, 928−931. (b) Miyoshi, T.; Sato, S.; Tanaka,
H.; Hasegawa, C.; Ueda, M.; Miyata, O. Tetrahedron Lett. 2012, 53,
4188−4191. (c) Gao, S.; Tu, Y. Q.; Song, Z.; Wang, A.; Fan, X.; Jiang,
Y. J. Org. Chem. 2005, 70, 6523−6525. (d) Henderson, K. W.; Kerr, W.
J.; Moir, J. H. Tetrahedron 2002, 58, 4573−4587. (e) Bozzini, S.;
Gratton, S.; Lisini, A.; Pellizer, G.; Risaliti, A. Tetrahedron 1982, 38,
1459−1464. (f) Bozzini, S.; Cova, B.; Gratton, S.; Lisini, A.; Risaliti, A.
J. Chem. Soc., Perkin. Trans. 1 1980, 240−243.
(3) (a) Hatakeyama, T.; Ito, S.; Nakamura, M.; Nakamura, E. J. Am.
Chem. Soc. 2005, 127, 14192−14193. (b) Hatakeyama, T.; Ito, S.;
Yamane, H.; Nakamura, M.; Nakamura, E. Tetrahedron 2007, 63,
8440−8448. (c) Ooi, T.; Goto, R.; Maruoka, K. J. Am. Chem. Soc.
2003, 125, 10494−10495. (d) Iwama, T.; Birman, V. B.; Kozmin, S.
A.; Rawal, V. H. Org. Lett. 1999, 1, 673−676. (e) Witt, O.; Mauser, H.;
Friedl, T.; Wilhelm, D.; Clark, T. J. Org. Chem. 1998, 63, 959−967.
(f) Molander, G. A.; McKie, J. A. J. Org. Chem. 1993, 58, 7216−7227.
(g) Chen, K.; Koser, G. F. J. Org. Chem. 1991, 56, 5764−5767.
(h) Peyman, A.; Beckhaus, H.-D.; Ruchardt, C. Chem. Ber. 1988, 121,
̈
1027−1031. (i) Rathke, M. W.; Vogiazoglou, D. J. Org. Chem. 1987,
52, 3697−3698. (j) Birch, A. J.; Kelly, L. F.; Narula, A. S. Tetrahedron
1982, 38, 1813−1823. (k) Dana, D. E. Synthesis 1982, 164−165.
763
dx.doi.org/10.1021/ol403472y | Org. Lett. 2014, 16, 760−763