Journal of the American Chemical Society
Communication
J. Am. Chem. Soc. 2006, 128, 7179. (e) Desai, L. V.; Sanford, M. S. Angew.
Chem., Int. Ed. 2007, 46, 5737. (f) Wang, A.; Jiang, H. J. Org. Chem. 2010,
75, 2321. (g) Zhu, M.-K.; Zhao, J.-F.; Loh, T.-P. J. Am. Chem. Soc. 2010,
132, 6284.
(6) For some reviews: (a) Vedernikov, A. N. Acc. Chem. Res. 2012, 45,
803. (b) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851.
(c) Piera, J.; Backvall, J.-E. Angew. Chem., Int. Ed. 2008, 47, 3506.
(d) Noyori, R.; Aoki, M.; Sato, K. Chem. Commun. 2003, 1977.
of our knowledge, this is a rare example of oxidative cleavage of a
C-Pd bond involving water as the nucleophile to give an alcohol
product. However, the above mechanism could not address the
formation of [16O]-4a.18 We assumed that alkyl Pd(IV)16OH
complex19 could also act as a nucleophile to compete with water,
allowing for nucleophilic attack of another alkyl Pd(IV)16OH to
give [16O]-4a.20
In conclusion, we have developed a simple catalytic system to
achieve intramolecular aminohydroxylation of alkenes with Pd
catalyst under mild reaction conditions. In this transformation,
aq H2O2 solution plays two roles to achieve C-OH bond
formation via a favorable SN2-type substitution pathway: H2O2 as
oxidant and water as nucleophile reacting with high-valent
palladium intermediate to give a C-O bond. Further application
of this aminohydroxylation reaction is in progress.
(8) Oxidation of stoichiometric amount of Pd(II) by H2O2: Oloo, W.;
Zavalij, P. Y.; Zhang, J.; Khashin, E.; Vedernikov, A. N. J. Am. Chem. Soc.
2010, 132, 14400.
(9) For Shilov reaction: (a) Shilov, A. E.; Shul’pin, G. B. Activation and
Catalytic Reactions of Saturated Hydrocarbons in the presence of Metal
Complexes, Kluwer, Dordrecht, 2000. (b) Shilov, A. E.; Shul’pin, G. B.
Chem. Rev. 1997, 97, 2879. (c) Kushch, K. A.; Lavrushko, V. V.;
Misharin, Y. S.; Moravshky, A. P.; Shilov, A. E. New. J. Chem. 1983, 7,
729. (d) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., Int. Ed.
1998, 37, 2180. Mechanistic studies on C-O bond formation:
(e) Vedernikov, A. N. Top. Organomet. Chem. 2010, 31, 101. (f) Luinstra,
G. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1993, 115, 3004.
(g) Labinger, J. A.; Herring, A. M.; Bercaw, J. E. J. Am. Chem. Soc. 1990,
112, 5628. (h) Vedernikov, A. N.; Binfield, S. A.; Zavalij, P. Y.;
Khusnutdinova, J. R. J. Am. Chem. Soc. 2006, 128, 82. (i) Khusnutdinova,
J. R.; Zavalij, P. Y.; Vedernikov, A. N. Organometallics 2007, 26, 3466.
(10) Recently, only a few cases were reported with water acting as a
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and characterization data. This material
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
nucleophile in allylic substitutions: Ir catalyst (a) Gartner, M.; Mader, S.;
̈
The authors declare no competing financial interest.
Seehafer, K.; Helmchen, G. J. Am. Chem. Soc. 2011, 133, 2072. Ru
catalyst (b) Kanbayashi, N.; Onitsuka, K. Angew. Chem., Int. Ed. 2011,
50, 5197. Organocatalyst (c) Zhu, B.; Yan, L.; Pan, Y.; Lee, R.; Liu, H.;
Han, Z.; Huang, K.-W.; Tan, C.-H.; Jiang, Z. J. Org. Chem. 2011, 76,
6894.
ACKNOWLEDGMENTS
■
We are grateful for financial support from the National Basic
Research Program of China (973-2011CB808700), the National
Nature Science Foundation of China (nos. 21225210, 21202185,
and 21121062), the Science and Technology Commission of the
Shanghai Municipality (11JC1415000), and the CAS/SAFEA
International Partnership Program for Creative Research Teams.
(11) (a) Yin, G.; Liu, G. Angew. Chem., Int. Ed. 2008, 47, 5442. (b) Yin,
G.; Wu, T.; Liu, G. Chem.Eur. J. 2012, 18, 451.
(12) (a) USP Dictionary of USAN and International Drug Names, US
Pharmacopoeis: Rockville, MD, 2000; P636. (b) Hannun, Y. A.; Bell, R.
M. Science 1989, 243, 500. (c) Schewartz, G. K.; Jiang, J.; Kelsen, D.;
Albino, A. P. J. Natl. Cancer. Inst. 1993, 85, 402.
REFERENCES
■
(13) Andrianasolo, E. H.; Haramaty, L.; McPhail, K. L.; White, E.;
Vetriani, C.; Falkoski, P.; Lutz, R. J. Nat. Prod. 2011, 74, 842.
(14) Alternative possibilities: (1) involving a sequential epoxidation of
olefin and ring-opening amination procedures; (2) nucleophilic attack
of H2O2 at carbon center of Pd(IV) complex to give peroxide
intermediate, then following reduction to afford the corresponding
alcohol product. However, both pathways are unlikely. For details, see
the SI.
(1) (a) Modern Oxidation Methods; Backvall, J.-E., Ed.; Wiley-VCH:
Weinheim, Germany, 2004. (b) Comprehensive Organic Synthesis; Trost,
̈
B. M., Fleming, I. A., Eds.; Pergamon Press: Oxford, 1991.
(2) Some reviews on high-valent Pd catalysis: (a) Muniz, K. Angew.
̃
Chem., Int. Ed. 2009, 48, 9412. (b) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J.
Chem. Soc. Rev. 2010, 39, 712. (c) Engle, K. M.; Mei, T.-S.; Wang, X.; Yu,
J.-Q. Angew. Chem., Int. Ed. 2011, 50, 1478. (d) Hickman, A. J.; Sanford,
M. S. Nature 2012, 484, 177. (e) Chen, P.; Liu, G.; Engle, K. M.; Yu, J.-Q.
In Science of Synthesis: Organometallic Complexes of Palladium, Stoltz, B.
M., Ed.; Thieme: Germany, 2013; Vol 1, p 63.
(15) Alternatively, alkyl Pd(IV)OH complex int-II could also act as
nucleophile to attack another high-valent palladium complex int-II to
give product trans-4a-d1.
(3) For selective examples: (a) Streuff, J.; Hovelmann, C. H.; Nieger,
̈
(16) The trans-aminopalladation is favorable in the acidic reaction
condition: Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328.
(17) H2O2 in H2O18 was derived from the mixture of 50% aq H2O2 (0.3
mmol) in H2O18 (98% O18, 9 mmol). Mixture was measured by mass
spectrometry. No O18 incorporation into H2O2 was observed. For
details, see the SI.
M.; Muniz, K. J. Am. Chem. Soc. 2005, 127, 14586. (b) Muniz, K. J. Am.
̃
̃
Chem. Soc. 2007, 129, 14542. (c) Muniz, K.; Hovelmann, C. H.; Streuff,
̃
̈
J. J. Am. Chem. Soc. 2008, 130, 763. (d) Thu, H.-Y.; Yu, W.-Y.; Che, C.-
M. J. Am. Chem. Soc. 2006, 128, 9048. (e) Yoo, E. J.; Ma, S.; Mei, T.-S.;
Chan, K. S. L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7652. (f) Iglesias,
A.; Alvarez, R.; de Lera, A. R.; Muniz, K. Angew. Chem., Int. Ed. 2012, 51,
2225.
(18) In the mixture, the ratio of H2O18:H2O16 is around 200−300:1,
and KIE value between 18O and 16O is <1.1. Thus, it is impossible to give
the equal amount of 18O and 16O incorporation with a single external
water nucleophilic pathway.
(4) For selective examples: (a) Hull, K. L.; Anani, W. Q.; Sanford, M. S.
J. Am. Chem. Soc. 2006, 128, 7134. (b) Wang, X.; Mei, T.-S.; Yu, J.-Q. J.
Am. Chem. Soc. 2009, 131, 7520. (c) Michael, F. E.; Sibbald, P. A.;
Cochran, B. M. Org. Lett. 2008, 10, 793. (d) Kalyani, D.; Sanford, M. S. J.
Am. Chem. Soc. 2008, 130, 2150. (e) Wu, T.; Yin, G.; Liu, G. J. Am. Chem.
Soc. 2009, 131, 16354.
(5) For selective examples: (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J.
Am. Chem. Soc. 2004, 126, 2300. (b) Giri, R.; Liang, J.; Lei, J.-G.; Li, J.-J.;
Wang, D.-H.; Chen, X.; Naggar, I. C.; Cuo, C.; Foxman, B. M.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2005, 44, 7420. (c) Alexanian, E. J.; Lee, C.;
Sorensen, E. J. J. Am. Chem. Soc. 2005, 127, 7690. (d) Liu, G.; Stahl, S. S.
(19) Alkyl Pd(IV)16OH complex was proposed to be derived from
oxidation of alkyl Pd(II) by H216O2, but the detailed mechanism is not
clear at the moment.
(20) A similar observation on oxygen incorporation and mechanistic
analysis was reported in the stoichiometric reaction of Me-Pt(IV)OH
complex. And the nucleophilicity of Me-Pt(IV)OH was estimated to be
∼103 greater than that of water. For details, see refs 9e−9i, and SI.
D
dx.doi.org/10.1021/ja412023b | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX