Journal of the American Chemical Society
Article
Mohan, S.; Wang, C.; Hattori, H. Acc. Chem. Res. 2008, 41, 1474−
1485. (d) Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2009, 48,
3565−3568. For representative syntheses of alkenylboron compounds
by Pd-catalyzed cross coupling reactions involving alkenyl bromides
and triflates, see: (e) Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura,
N. J. Am. Chem. Soc. 2002, 124, 8001−8006. For a review on alkenyl
trifluoroborate species, accessed via (pinacolato)alkenylboron com-
pounds, see: (f) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40,
275−286.
(19) Kiesewetter, E. T.; O’Brien, R. V.; Yu, E. C.; Meek, S. J.;
Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2013, 135, 6026−
6029.
(20) Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.;
Hoveyda, A. H. Nature 2008, 456, 933−937.
(21) In general, the small amount of the E-alkenyl−B(pin) isomer
obtained from Mo-catalyzed CM is lost through the NHC−Cu-
catalyzed EAS, allowing the enantiomerically enriched 1,4-dienes to be
isolated as pure Z isomers. Examination of the 1H NMR spectra of the
unpurified reaction mixtures does not indicate the presence of any EAS
products that contain an E olefin; it is unlikely that the latter is
removed in the course of silica gel chromatography. It is unclear in
exactly what way the minor alkenyl isomer is consumed. It is possible
that the minor but the less sterically congested and thus more reactive
C−B bond of the E-alkenyl−B(pin) is more rapidly converted to the
corresponding C−Cu bond (vs the Z isomer) that then undergoes
protonation by the small amount (ca. 5 mol %) of MeOH generated
due to deprotonation of the imidazolinium salt by NaOMe (to afford
the corresponding terminal alkene). The latter possibility thus
accounts for some of the differences between the conversion levels
and values of yield for isolated and purified compounds.
(22) Examination of molecular models indicates that binding of the
allylic phosphate to the front of the NHC−Cu complex leads to steric
repulsion with the protruding phenyl moiety of the dissymmetric NAr
unit. In contrast, substrate association from the rear, as shown, allows
the bulky phosphate or alkenyl substituent to occupy the quadrant that
is rendered relatively unoccupied due to one of the two Ph groups at
the backbone of the chiral NHC pointing syn to the neighboring
sulfonate bridge. For a detailed discussion on the specific structural
attributes of chiral bidentate NHC−metal complexes that contain a
sulfonate bridge, see: (a) Lee, Y.; Li, B.; Hoveyda, A. H. J. Am. Chem.
Soc. 2009, 131, 11625−11633. (b) Reference 11.
(23) For isolation and selected previous syntheses, see: (a) Iida, Y.;
Oh, K.-B.; Saito, M.; Matsuoka, H.; Kurata, H.; Natsume, M.; Abe, H.
J. Agric. Food Chem. 1999, 47, 584−587. (b) Jeong, S. J.; Higuchi, R.;
Ono, M.; Kuwano, M.; Kim, Y.-C.; Miyamoto, T. Biol. Pharm. Bull.
2006, 26, 1721−1724. (c) Reference 6. (d) Reference 8.
(24) (a) Molander, G. A.; Ellis, N. M. J. Org. Chem. 2008, 73, 6841−
6844. For a Rh- or Ir-catalyzed method for synthesis of Z-alkenyl−
B(pin) compounds through trans hydroboration of terminal alkynes,
see: (b) Ohmura, T.; Yamamoto, Y.; Miyaura, N. J. Am. Chem. Soc.
2000, 122, 4990−4991.
(25) For isolation, see: (a) Masías, F. A.; Molinillo, J. M. G.; Varela,
R. M.; Torres, A. J. Org. Chem. 1994, 59, 8261−8266. For previous
synthesis of heliannuol C, see: (b) Kamei, T.; Shindo, M.; Shishido, K.
Tetrahedron Lett. 2003, 44, 8505−8507. (c) Vyvyan, J. R.; Oaksmith, J.
M.; Parks, B. W.; Peterson, E. M. Tetrahedron Lett. 2005, 46, 2457−
2460. (d) Biswas, B.; Sen, P. K.; Venkateswaran, R. V. Tetrahedron Lett.
2006, 47, 4019−4021. For previous synthesis of heliannuol E, see:
(e) Liu, Y.; Huang, C.; Liu, B. Tetrahedron Lett. 2011, 52, 5802−5804.
(26) Huang, C.; Liu, B. Chem. Commun. 2010, 46, 5280−5282 and
references cited therein.
(27) Preparation of Z-alkenyl−B(pin) reagent 34 through stereo-
selective CM proved to be inefficient, probably as a result of a high
degree of steric hindrance imposed by the allylic silyl ether. As a result,
trans-selective Rh-catalyzed hydroboration of the corresponding
terminal alkyne was used; see ref 24b.
(3) For reviews on catalytic EAS reactions with “hard” C-based
nucleophilic reagents, see: (a) Hoveyda, A. H.; Hird, A. W.;
Kacprzynski, M. A. Chem. Commun. 2004, 1779−1785. (b) Yorimitsu,
H.; Oshima, K. Angew. Chem., Int. Ed. 2005, 44, 4435−4439.
(c) Alexakis, A.; Backvall, J. E.; Krause, N.; Pam
Chem. Rev. 2008, 108, 2796−2823.
̀
ies, O.; Dieg
́
uez, M.
̈
(4) For representative studies regarding catalytic EAS reactions
performed in these laboratories, see NHC−Mg-catalyzed and with
alkylmagnesium halides: (a) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc.
2006, 128, 15604−15605. NHC−Cu-catalyzed and with aryl- or
heteroarylaluminum reagents: (b) Gao, F.; Lee, Y.; Mandai, K.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2010, 49, 8370−8374. NHC−
Cu-catalyzed and with alkynylaluminium reagents: (c) Dabrowski, J.
A.; Gao, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 4778−4781.
(d) Dabrowski, J. A.; Haeffner, F.; Hoveyda, A. H. Angew. Chem., Int.
Ed. 2013, 52, 7694−7699.
(5) Gao, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10961−
10962.
(6) Akiyama, K.; Gao, F.; Hoveyda, A. H. Angew. Chem., Int. Ed.
2010, 49, 419−423.
(7) Gao, F.; McGrath, K. P.; Lee, Y.; Hoveyda, A. H. J. Am. Chem.
Soc. 2010, 132, 14315−14320.
(8) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. J. Am. Chem. Soc. 2013,
135, 994−997.
(9) Shintani, R.; Takatsu, K.; Takeda, M.; Hayashi, T. Angew. Chem.,
Int. Ed. 2011, 50, 8656−8659.
(10) Gao, F.; Carr, J. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2012,
51, 6613−6617.
(11) Jung, B.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 1490−
1493.
(12) Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A. H. Angew.
Chem., Int. Ed. 2007, 46, 1097−1100.
(13) β-Alkenyl−B(pin) reagents can be prepared by Ni-catalyzed
hydroalumination of alkyl- or aryl-substituted terminal alkynes; see ref
5.
(14) For representative previous applications of Cu complexes
derived from 6 and related NHC ligands, see: (a) Martin, D.; Kehrli,
S.; d’Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis, A. J. Am. Chem.
Soc. 2006, 128, 8416−8417. (b) Magrez, M.; Le Guen, Y.; Basle,
́
O.;
Crev
́
isy, C.; Mauduit, M. Chem.Eur. J. 2013, 19, 1199−1203.
(15) (a) See ref 10. For the use of NaOt-Bu for activation of
arylboron reagents towards additions to CO2 in a Cu-catalyzed
process, see: (b) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int.
Ed. 2008, 47, 5792−5795.
(16) Attempts to separate 15c from 16 were unsuccessful; the yield
1
indicated is estimated from analysis of the H NMR spectra.
(17) (a) Sy, L.-K.; Brown, G. D. Phytochemistry 2001, 58, 1159−
1166. (b) Araki, S.; Kambe, S.; Kameda, K.; Hirashita, T. Synthesis
2003, 751−754.
(28) For a comprehensive review of Ti-catalyzed directed
epoxidation of allylic alcohols, see: Johnson, R. A.; Sharpless, K. B.
In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York,
1993; pp 103−158.
(29) For a related example, see: (a) Kitamura, M.; Isobe, M.;
Ichikawa, Y.; Goto, T. J. Org. Chem. 1984, 49, 3517−3527. For a
review on Ti-catalyzed directed epoxidation of allylic alcohols, see:
(b) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93,
1307−1370.
(30) Dai, L.-x.; Lou, B.-l.; Zhang, Y.-z.; Guo, G.-z. Tetrahedron Lett.
1986, 27, 4343−4346.
(18) Catalytic EAS reactions with substrates that contain a 1,1,2-
trisubstituted olefin have been less frequently investigated as compared
to those that contain a disubstituted or the alternative trisubstituted
olefin isomer. See: (a) Falciola, C. A.; Tissot-Croset, K.; Alexakis, A.
Angew. Chem., Int. Ed. 2006, 45, 5995−5998. (b) Gillingham, D. G.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 3860−3864. (c) Lee,
Y.; Akiyama, K.; Gillingham, D. G.; Brown, M. K.; Hoveyda, A. H. J.
Am. Chem. Soc. 2008, 130, 446−447. For reactions with activated
substrates, see: (d) Goldsmith, P. J.; Teat, S. J.; Woodward, S. Angew.
Chem., Int. Ed. 2005, 44, 2235−2237.
L
dx.doi.org/10.1021/ja4126565 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX