Journal of Inorganic and General Chemistry
ARTICLE
Zeitschrift für anorganische und allgemeine Chemie
([M + Na]+). UV/Vis (CH2Cl2): λabs (ε[L·mol–1·cm–1]) = 308 (36600),
2041–2047; l) F. A. Cotton, L. R. Falvello, A. H. Reid Jr., J. H.
Tocher, J. Organomet. Chem. 1987, 319, 87–97; m) F. A. Cotton,
G. G. deBoer, M. D. la Prade, J. R. Pipal, D. A. Ucko, Acta Crys-
tallogr., Sect. B 1971, 27, 1664–1671; n) F. A. Cotton, E. A. Hil-
lard, C. A. Murillo, H.-C. Zhou, J. Am. Chem. Soc. 2000, 122,
416–417; o) N. Benbellat, K. S. Gavrilenko, Y. Le Gal, O. Cador,
S. Golhen, A. Gouasmia, J.-M. Fabre, L. Ouahab, Inorg. Chem.
2006, 45, 10440–10442; p) A. R. Chakravarty, F. A. Cotton, In-
org. Chem. 1985, 24, 3584–3589; q) F. A. Urbanos, M. C. Barral,
R. Jiménez-Aparicio, Polyhedron 1988, 7, 2597–2600; r) M. C.
Barral, R. Jiménez-Aparicio, C. Rial, E. C. Royer, M. J. Saucedo,
F. A. Urbanos, Polyhedron 1990, 9, 1723–1728; s) M. C. Barral,
R. Jiménez-Aparicio, M. J. Larrubia, E. C. Royer, F. A. Urbanos,
Inorg. Chim. Acta 1991, 186, 239–242; t) F. A. Cotton, L. M.
Daniels, P. A. Kibala, M. Matusz, W. J. Roth, W. Schwotzer, W.
Wenning, Z. Bianxiao, Inorg. Chim. Acta 1994, 215, 9–15; u) N.
Motokawa, S. Matsunaga, S. Takaishi, H. Miyasaka, M. Yamash-
ita, K. R. Dunbar, J. Am. Chem. Soc. 2010, 132, 11943–11951; v)
H. Miyasaka, N. Motokawa, R. Atsuumi, H. Kamo, Y. Asai, M.
Yamashita, Dalton Trans. 2010, 40, 673–682; w) R. Gracia, H.
Adams, N. J. Patmore, Inorg. Chim. Acta 2010, 363, 3856–3864;
x) J. E. Barker, T. Ren, Inorg. Chem. 2008, 47, 2264–2266; y)
M. W. Cooke, G. S. Hanan, F. Loiseau, S. Campagna, M. Watan-
abe, Y. Tanaka, J. Am. Chem. Soc. 2007, 129, 10479–10488.
[2] C. Bronner, S. A. Baudron, M. W. Hosseini, Inorg. Chem. 2010,
49, 8659–8661.
366 (23900), 511 (269600) nm. λem (λexc: 511 nm) = 536 nm.
C84H80B4F8N8O8·2MeOH: calcd. C 57.55, H 4.94, N 6.24%; found:
C 57.76, H 5.12, N 6.34%.
Rhodium Paddlewheel Complex 27: BODIPY carboxylic acid 14
(96 mg, 0.20 mmol) and rhodium acetate (20 mg, 0.05 mmol) were
heated in 1,2-dichlorobenzene (10 mL) and methanol (20 μL) to
150 °C for 4 h. After removal of the solvents in vacuo the residue
was purified by silica chromatography with dichloromethane + 0.5%
methanol to yield the title compound (70 mg, 32.6 μmol, 72%). 1H
NMR (400 MHz, CDCl3): δ = 7.96 (d, 8 H, J = 8.4 Hz, Ar-H), 7.05
(d, 8 H, J = 8.4 Hz, Ar-H), 6.91 (s, 8 H, Mes-H), 6.01 (s, 4 H, β-H),
2.56 (s, 12 H, CH3), 2.41 (s, 12 H, CH3), 2.30 (s, 12 H, Mes-CH3),
2.08 (s, 24 H, Mes-CH3), 1.38 (s, 12 H, CH3), 1.21 (s, 12 H, CH3).
13C NMR (100 MHz, CDCl3): δ = 185.0, 156.1, 152.8, 143.1 142.1,
138.7, 138.1, 138.0, 137.9, 134.8, 132.0, 131.1, 130.0, 129.8, 129.4,
129.1, 129.0, 121.0, 31.1, 21.2, 19.5, 14.7, 13.5, 11.4. 11B NMR
(128 MHz, CDCl3): δ = 1.03 (m, 4B, BF2). 19F NMR (376 MHz,
CDCl3): δ = –146.6 (m, 8F, BF2). MS (ESI): m/z = 2146 ([M]+). UV/
Vis (CH2Cl2): λabs (ε[L·mol–1·cm–1]) = 269 (61700), 368 (26000), 517
(358600) nm. λem (λexc: 517 nm) = 537 nm. C116H112B4F8N8O8·
2CH3OH: calcd. C 64.09, H 5.47, N 5.07%; found: C 64.27, H 5.24,
N 5.10%.
[3] a) A. Treibs, F.-H. Kreuzer, Justus Liebigs Ann. Chem. 1968, 718,
208–223; b) A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891–
4932; c) G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int.
Ed. 2008, 47, 1184–1201; d) A. Kamkaew, S. H. Lim, H. B. Lee,
L. V. Kiew, L. Y. Chung, K. Burgess, Chem. Soc. Rev. 2013, 42,
77–88; e) L. Yuan, W. Lin, K. Zheng, L. He, W. Huang, Chem.
Soc. Rev. 2013, 42, 622–661; f) J. Zhao, W. Wu, J. Sun, S. Guo,
Chem. Soc. Rev. 2013, 42, 5323–5351.
[4] a) S. Zhang, T. Wu, J. Fan, Z. Li, N. Jiang, J. Wang, B. Dou, S.
Sun, F. Song, X. Peng, Org. Biomol. Chem. 2013, 11, 555–558;
b) E. Crivellato, L. Candussio, A. M. Rosati, F. Bartoli-Klug-
mann, F. Mallardi, G. Decorti, J. Histochem. Cytochem. 2002, 50,
731–734.
[5] Selected examples: a) L. Li, J. Han, B. Nguyen, K. Burgess, J.
Org. Chem. 2008, 73, 1963–1970; b) M. Bröring, R. Krüger, C.
Kleeberg, Z. Anorg. Allg. Chem. 2008, 634, 1555–1559; c) Y.
Hayashi, S. Yamaguchi, W. Y. Cha, D. Kim, H. Shinokubo, Org.
Lett. 2011, 13, 2992–2995; d) C. Yu, L. Jiao, H. Yin, J. Zhou, W.
Pang, Y. Wu, Z. Wang, G. Yang, E. Hao, Eur. J. Org. Chem. 2011,
2011, 5460–5468; e) G. Duran-Sampedro, A. R. Agarrabeitia, I.
Garcia-Moreno, A. Costela, J. Bañuelos, T. Arbeloa, I. López Ar-
beloa, J. L. Chiara, M. J. Ortiz, Eur. J. Org. Chem. 2012, 2012,
6335–6350; f) J. Ahrens, B. Haberlag, A. Scheja, M. Tamm, M.
Bröring, Chem. Eur. J. 2014, 20, 2901–2912.
Rhodium Paddlewheel Complex 28: BODIPY carboxylic acid 17
(80 mg, 157 μmol) and rhodium acetate (15 mg, 34 μmol) were heated
in 1,2-dichlorobenzene (10 mL) and methanol (20 μL) to 150 °C for 4
h. After removal of the solvents in vacuo the residue was purified by
silica chromatography with dichloromethane + 0.5% methanol to yield
the title compound (54 mg, 24 μmol, 73%). 1H NMR (400 MHz,
CDCl3): δ = 7.87 (d, 6H, J = 8.4 Hz, Ar-H), 7.45 (dd, 2H, J1 = 3.5, J2
= 6.0 Hz, Ar-H), 7.30 (d, 6H, J = 8.4 Hz, Ar-H), 7.21 (dd, 2H, J1 =
3.5, J2 = 6.0 Hz, Ar-H), 6.94 (s, 8H, Mes-H), 6.02 (s, 4H, β-H), 2.65
(s, 12H, CH3), 2.57 (s, 12H, CH3), 2.33 (s, 12H, Mes-CH3), 2.06 (s,
24H, Mes-CH3), 1.46 (s, 12H, CH3), 1.39 (s, 12H, CH3). 13C NMR
(100 MHz, CDCl3): δ = 184.7, 157.8, 156.1, 144.2, 142.3, 141.9,
138.9, 134.8, 132.6, 131.9, 130.7, 130.5, 130.3, 130.0, 129.3, 129.1,
129.0, 127.7, 127.6, 121.9, 114.1, 95.4, 85.2, 21.2, 19.5, 14.8, 13.6,
13.5, 12.1. 11B NMR (128 MHz, CDCl3): δ = 0.89 (t, J = 30.4 Hz, 4B,
BF2). 19F NMR (376 MHz, CDCl3): δ = –146.9 (m, 8F, BF2). MS
(ESI): m/z = 2306 ([M + 2 MeOH]+). UV/Vis (CH2Cl2): λabs (ε[L·
mol–1·cm–1]) = 298 (64000), 346 (67100), 405 (27600), 537 (234200)
nm. λem (λexc: 537 nm) = 562 nm. HRMS (ESI): m/z calcd. for
C124H112B4F8N8O8Rh2 ([M]2+): 1121.35117; found.: 1121.35072.
[6] a) M. Bröring, R. Krüger, S. Link, C. Kleeberg, S. Köhler, X.
Xie, B. Ventura, L. Flamigni, Chem. Eur. J. 2008, 14, 2976–2983;
b) O. Buyukcakir, O. A. Bozdemir, S. Kolemen, S. Erbas, E. U.
Akkaya, Org. Lett. 2009, 11, 4644–4647; c) B. Ventura, G. Mar-
coni, M. Bröring, R. Krüger, L. Flamigni, New J. Chem. 2009,
33, 428–438; d) T. Bura, P. Retailleau, G. Ulrich, R. Ziessel, J.
Org. Chem. 2011, 76, 1109–1117; e) S. Zhu, J. Zhang, G.
Vegesna, A. Tiwari, F.-T. Luo, M. Zeller, R. Luck, H. Li, S.
Green, H. Liu, RSC Adv. 2011, 2, 404–407; f) S. G. Awuah, Y.
You, RSC Adv. 2012, 2, 11169–11183; g) J. Ahrens, B. Böker, K.
Brandhorst, M. Funk, M. Bröring, Chem. Eur. J. 2013, 19, 11382–
11395; h) K. Gräf, T. Körzdörfer, S. Kümmel, M. Thelakkat, New
J. Chem. 2013, 37, 1417–1426.
[7] a) A. B. Nepomnyashchii, M. Bröring, J. Ahrens, R. Krüger, A. J.
Bard, J. Phys. Chem. C 2010, 114, 14453–14460; b) A. B. Ne-
pomnyashchii, M. Bröring, J. Ahrens, A. J. Bard, J. Am. Chem.
Soc. 2011, 133, 8633–8645; c) A. B. Nepomnyashchii, M.
Bröring, J. Ahrens, A. J. Bard, J. Am. Chem. Soc. 2011, 133,
19498–19504.
Supporting Information (see footnote on the first page of this article):
Preparation and analysis of precursors 2, 4, and 21.
References
[1] a) J. N. van Niekerk, F. R. L. Schoening, Acta Crystallogr. 1953,
6, 227–232; b) P. de Meester, S. R. Fletcher, A. C. Skapski, J.
Chem. Soc., Dalton Trans. 1973, 2575–2578; c) G. M. Brown, R.
Chidambaram, Acta Crystallogr., Sect. B 1973, 29, 2393–2403;
d) H. U. Güdel, A. Stebler, A. Furrer, Inorg. Chem. 1979, 18,
1021–1023; e) S. A. Johnson, H. R. Hunt, H. M. Keumann, Inorg.
Chem. 1963, 2, 960–961; f) T. A. Stephenson, E. Bannister, G.
Wilkinson, J. Chem. Soc. 1964, 2538–2541; g) J. V. Brencic, F. A.
Cotton, Inorg. Chem. 1969, 9, 7–10; h) T. Liwporncharoenvong,
R. L. Luck, Inorg. Chim. Acta 2002, 340, 147–154; i) F. A. Cot-
ton, J. G. Norman Jr., J. Am. Chem. Soc. 1972, 94, 5697–5702; j)
A. Bino, F. A. Cotton, P. E. Fanwick, Inorg. Chem. 1979, 18,
1719–1722; k) W.-M. Xue, F. E. Kühn, Eur. J. Inorg. Chem. 2001,
Z. Anorg. Allg. Chem. 2016, 107–117
116
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim