N. DHAHRI, B. TAOUFIK AND R. GOUMONT
[25] I. Jamaoui, T. Boubaker, R. Goumont, Int. J. Chem. Kinet. 2012, 45,
152–160.
REFERENCES
[26] M. R. Crampton, R. A. Lunn and D. Lucas, Org. Biomol. Chem., 2003,
[1] a)A. Gazit, N. Osherov, C. Gilon, A. Levitzki, J. Med. Chem. 1996, 39,
4905–4911; b)A. Gazit, N. Osherov, I. Posner, A. Bar-Sinai, C. Gilon,
A. Levitzki, J. Med. Chem. 1993, 36, 3556–3564; c)A. Gazit, N.
Osherov, I. Posner, P. Yaish, E. Poradosu, C. Gilon, A. Levitzki,
J. Med. Chem. 1991, 34, 1896–1907.
[2] I. Posner, M. Engel, A. Gazit, A. Levitzki, Mol. Pharmacol. 1993, 45,
673–683.
[3] K. Tanaka, F. Toda, Chem. Rev. 2000, 100, 1025.
[4] a)C. F. Bernasconi, F. X. Flores, J. J. Claus, D. Drovac, J. Org. Chem.
1994,59, 4917–4924; b)C. F. Bernasconi, K. A. Howard, A. Kanavarioti.
J. Am. Chem. Soc. 1984, 106, 6827–6835.
[5] a)T. Lemek, H. Mayr, J. Org. Chem. 2003, 68, 6880–6886; b)N. Streidl,
B. Denegri, O. Kronja, H. Mayr, Acc. Chem. Res. 2010, 43, 1537–1549.
[6] H. K. Oh, J. H. Yang, H. W. Lee, I. Lee, J. Org. Chem. 2000, 65, 2188–2191.
[7] S. P. Rose, R. Smith, New Sci. 1969, 43, 468.
[8] N. L. Petrakis, H. R. Bierman, M. B. Shimkin, Cancer Res. 1952, 12, 573.
[9] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 97, 165–195.
[10] Y. Tsuno, M. Fujio, Adv. Phys. Org. Chem. 1999, 32, 267–385.
[11] C. F. Bernasconi, J. P. Fox, A. Kanavarioti, M. Panda, J. Am. Chem. Soc.
1986, 108, 2372–2381.
[12] a)I.-H. Um, S.-M. Chun, O.-M. Chae, M. Fujio, Y. Tsuno, J. Org. Chem.
2004, 69, 3166–3172; b)I.-H. Um, J.-Y. Lee, M. Fujio, Y. Tsuno, Org.
Biomol. Chem. 2006, 4, 2979–2985; c)I.-H. Um, S.-J. Hwang, S. Yoon,
S.-E. Jeon, S.-K. Bae, J. Org. Chem. 2008, 73, 7671–7677; d)I.-H. Um,
E.-H. Kim, J.-Y. Lee, J. Org. Chem. 2009, 74, 1212–1217; e)I.-H. Um,
A. R. Bae, J. Org. Chem. 2011, 76, 7510–7515; f)I.-H. Um, A. R. Bae,
J. Org. Chem. 2012, 77, 5781–5787.
1, 3438–3443.
[27] L. Forlani, C. Boga, A. Mazzanti, N. Zanna, Eur. J. Org. Chem. 2012,
1123–1129.
[28] a)N. El Guesmi, T. Boubaker, R. Goumont, F. Terrier, Org. Biomol.
Chem. 2008, 6, 4041–4052; b)N. El Guesmi, T. Boubaker, R. Goumont,
F. Terrier, Chem. Eur. J. 2009, 15, 12018–12029;
c)N. El Guesmi, T. Boubaker, Int. J. Chem. Kinet. 2011, 43, 255–262.
[29] D. Vichard, T. Boubaker, F. Terrier, M. J. Pouet, M. J. Dust, E. Buncel,
Can. J. Chem. 2001, 79, 1617–1623.
[30] S. Minegishi, H. Mayr, J. Am. Chem. Soc. 2003, 125, 286–295.
[31] M. F. Gotta, H. Mayr, J. Org. Chem. 1998, 63, 9769–9775.
[32] T. Bug, T. Lemek, H. Mayr, J. Org. Chem., 2004, 69, 7565–7576.
[33] R. C. Samanta, B. Maji, S. D. Sarkar, K. Bergander, R. Fröhlich,
C. Mück Lichtenfeld, H. Mayr, A. Studer, Angew. Chem. Int. Ed.
2012, 51, 5234–5238.
[34] F. Brotzel, Y. C. Chu, H. Mayr, J. Org. Chem. 2007, 72, 3679–3688.
[35] R. Appel, S. Chelli, T. Tokuyasu, K. Troshin, H. Mayr, J. Am. Chem. Soc.
2013, 135, 6579–6587.
[36] X.-H. Duan, H. Mayr, Org. Lett. 2010, 12, 2238–2241.
[37] O. Kaumanns, R. Appel, T. Lemek, F. Seeliger, H. Mayr, J. Org. Chem.
2009, 74, 75–81.
[38] I. Zenz, H. Mayr, J. Org. Chem. 2011, 76, 9370–9378.
[39] a)H. Mayr, M. Patz, Angew. Chem. Int. Ed. Engl. 1994, 33, 938–957;
b)H. Mayr, B. Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66–77.
[40] Rate constants (kexp) values taken from ref. 11. kcalc values deter-
mined in ref. 5.
[41] C. F. Bernasconi, J. L. Zitomer, J. P. Fox, K. A. Howard, J. Org. Chem.
1984, 49, 482–486.
[13] H. J. Koh, K. L. Han, H. W. Lee, I. Lee, J. Org. Chem. 2000, 65, 47064–4711.
[14] N. K. Dey, M. E. U. Hoque, C. K. Kim, J. Phys. Org. Chem. 2010, 23,
1022–1028.
[15] J. Ammer, C. Nolte, H. Mayr, J. Am. Chem. Soc. 2012, 134, 13902–13911.
[16] M. Horn, H. Mayr, Eur. J. Org. Chem. 2011, 6470–6475.
[17] H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf,
R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J. Am. Chem. Soc.
2001, 123, 9500–9512.
[42] O. Kaumanns, R. Lucius, H. Mayr, Chem. Eur. J. 2008, 14, 9675–9682.
[43] S. Lakhdar, M. Westermaier, F. Terrier, R. Goumont, T. Boubaker,
A. R. Ofial, H. Mayr, J. Org. Chem. 2006, 71, 9088–9095.
[44] H. Mayr, A. R. Ofial, Pure Appl. Chem. 2005, 77, 1807–1821.
[45] T. B. Phan, M. Breugst, H. Mayr, Angew. Chem. Int. Ed. 2006, 45,
3869–3874.
[18] a)F. Terrier, S. Lakhdar, T. Boubaker, R. Goumont, J. Org. Chem. 2005,
70, 6242–6253; b)X. Guo, H. Mayr, J. Am. Chem. Soc. 2013, 135,
12377–12387.
[19] S. Lakhdar, R. Goumont, F. Terrier, T. Boubaker, J. M. Dust, E. Buncel,
Org. Biomol. Chem. 2007, 5, 1744–1751.
[20] H. Asahara, H. Mayr, Chem. Asian J. 2012, 7, 1401–1407.
[21] T. Kanzian, H. Mayr, Chem. Eur. J. 2010, 16, 11670–11677.
[22] S. Lakhdar, R. Goumont, T. Boubaker, M. Moktari, F. Terrier, Org.
Biomol. Chem. 2006, 4, 1910–1919.
[46] H. A. Albar, A. S. Shawali, M. A. Abdaliah, Can. J. Chem. 1993, 71, 2144–2149.
[47] a)M. Mokhtari, R. Goumont, J. C. Hallé, F. Terrier, Arkivoc 2002, xi, 168;
b)F. Terrier, F. Millot, W. P. Norris, J. Am. Chem. Soc. 1976, 98, 5883;
c)E. Buncel, M. R. Crampton, M. J. Strauss, F. Terrier, Electron-Deficient
Aromatic and Heteroaromatic-Base Interactions, Elsevier, Amsterdam,
1984; d)E. Buncel, J. M. Dust, F. Terrier, Chem. Rev. 1995, 95, 2261.
[48] B. B. Corson, R. W. Stoughton, J. Am. Chem. Soc. 1928, 50,
2825–2837.
[23] a)T. Boubaker, A. P. Chatrousse, F. Terrier, B. Tangour, J. M. Dust,
E. Buncel, J. Chem. Soc., Perkin Trans. 2 2002, 1627–1633; b)T. Boubaker,
E. Jan, R. Goumont, F. Terrier, Org. Biomol. Chem. 2003, 1, 2764.
[24] F. Terrier, Modern Nucleophilic Aromatic Substitution, John Wiley &
Sons, Weinheim, 2013.
SUPPORTING INFORMATION
Additional supporting information may be found in the online
version of this article at the publisher’s web site.
wileyonlinelibrary.com/journal/poc
Copyright © 2014 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2014