Job/Unit: O30172
/KAP1
Date: 15-06-13 10:30:18
Pages: 7
Nitroalkene Synthesis: A One-Pot Synthetic Strategy
[13] R. K. Pettit, G. R. Pettit, E. Hamel, F. Hogan, B. R. Moser, S.
Wolf, S. Pon, J.-C. Chapuis, J. M. Schmidt, Bioorg. Med. Chem.
2009, 17, 6606–6612.
was removed under reduced pressure and the residue was purified
by silica gel (60–120 mesh) column chromatography (5% ethyl acet-
ate in petroleum ether) to afford 3a as a yellow solid (141.55 mg,
0.95 mmol, 95%), m.p. 56 °C. 1H NMR (CDCl3, 300 MHz): δ =
7.43–7.49 (m, 2 H), 7.53–7.54 (m, 1 H), 7.57 (s, 2 H), 7.61 (s, 1 H),
8.01 (d, J = 13.7 Hz, 1 H) ppm.
[14] S. Kaap, I. Quentin, D. Tamiru, M. Shaheen, K. Eger, H. J.
Steinfelder, Biochem. Pharmacol. 2003, 65, 603–610.
[15] a) G. Rosini, in: Comprehensive Organic Synthesis, vol. 2 (Eds.:
C. H. Heathcock, B. M. Trost, I. Fleming), Pergamon Press,
Oxford, 1991, chapter 1.10, p. 321–394, and references cited
therein; b) D. E. Worrall, Organic Synthesis Coll. Vol. 1, John
Wiley & Sons, Inc., New York, NY, 1941, p. 413; c) R. V. Hein-
zelman, Org. Synth. 1963, 4, 573; d) E. McDonald, R. T. Mar-
tin, Tetrahedron Lett. 1977, 18, 1317–1320; e) N. Ono, H. Ka-
wamura, M. Bougauchi, K. Maruyama, Tetrahedron 1990, 46,
7483–7496.
Supporting Information (see footnote on the first page of this arti-
1
cle): Full experimental details for all compounds and H and 13C
NMR spectra are provided.
Acknowledgments
[16] a) R. Varma, R. Dahiya, S. Kumar, Tetrahedron Lett. 1997, 38,
5131; b) J. McNulty, J. Streere, S. Wolf, Tetrahedron Lett. 1998,
39, 8013.
The authors acknowledge the financial and infrastructural support
from the Department of Science and Technology (DST)-PURSE
program. S. J., S. S. and K. B. are thankful to the Council of Scien-
tific and Industrial Research (CSIR), New Delhi for fellowships.
[17] A. Alizadeh, M. M. Khodaei, A. Eshghi, J. Org. Chem. 2010,
75, 8295–8298.
[18] J. Yang, J. Dong, X. Lü, Q. Zhang, W. Ding, X. Shi, Chin. J.
Chem. 2012, 30, 2827–2833.
[19] a) P. Campos, B. Garcia, M. Rodriguez, Tetrahedron Lett. 2000,
41, 979; b) S. Varma, P. Naicker, J. Liesen, Tetrahedron Lett.
1998, 39, 3977; c) M. Rao, S. Rao, P. Srinivas, K. S. Babu,
Tetrahedron Lett. 2005, 46, 8141.
[20] a) H. Yu, J. X. ie, Y. Zhong, F. Zhang, W. Zhu, Catal. Commun.
2012, 29, 101–104, and references cited therein; b) S. Yan, Y.
Gao, R. Xing, Y. Shen, Y. Liu, P. Wu, H. Wu, Tetrahedron
2008, 64, 6294–6299.
[1] a) A. G. M. Barratt, G. G. Graboski, Chem. Rev. 1986, 86, 751–
762; b) A. G. M. Barratt, Chem. Soc. Rev. 1991, 20, 95–127; c)
M. P. Sibi, S. Manyem, Tetrahedron 2000, 56, 8033; d) N. Ono,
in: The Nitro Group in Organic Synthesis Wiley-VCH, New
York, 2001.
[2] a) O. M. Berner, L. Enders, D. Tedeschi, Eur. J. Org. Chem.
2002, 1877; b) T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem.
Soc. 2003, 125, 12672.
[21] S. Fioravanti, L. Pellacani, P. A. Tardella, M. C. Vergari, Org.
Lett. 2008, 10, 1449–1451.
[3] a) N. Takenaka, J. Chen, B. Captain, R. S. Sarangthem, A. [22] a) C. Zhong, X. Shi, Eur. J. Org. Chem. 2010, 2999–3025; b)
Chandrakumar, J. Am. Chem. Soc. 2010, 132, 4536; b) J. Wu,
X. Li, F. Wu, B. Wan, Org. Lett. 2011, 13, 4834.
[4] K. Fuji, M. Node, H. Nagasawa, Y. Nanima, S. Terada, J. Am.
Chem. Soc. 1986, 108, 3855.
[5] M. J. Kurth, M. J. O’Brien, H. Hope, M. Yanuck, J. Org. Chem.
1985, 50, 2626.
[6] a) L. Novellino, M. d’Ischia, G. Prota, Synthesis 1999, 793–
796; b) F. He, Y. Bo, J. D. Altom, E. J. Corey, J. Am. Chem.
Soc. 1999, 121, 6771–6772.
[7] a) R. Ballini, M. Petrini, ARKIVOC (Gainesville, FL, U.S.)
2009, 195–223; b) A. Kamimura, T. Yoshida, H. Uno, Tetrahe-
dron 2008, 64, 11081–11085.
W. Sun, G. Zhu, L. Hong, R. Wang, Chem. Eur. J. 2011, 17,
13958–13962; c) A. E. Allen, D. W. C. MacMillan, Chem. Sci.
2012, 3, 633–658, and references cited therein.
[23] a) S. Maiti, S. Biswas, U. Jana, J. Org. Chem. 2010, 75, 1674–
1683; b) K. Bera, S. Sarkar, S. Jalal, U. Jana, J. Org. Chem.
2012, 77, 8780–8786; c) S. Sarkar, S. Maiti, K. Bera, S. Jalal,
U. Jana, Tetrahedron Lett. 2012, 53, 5544–5547; d) K. Bera, S.
Sarkar, S. Biswas, S. Maiti, U. Jana, J. Org. Chem. 2011, 76,
3539–3544; e) S. Maiti, S. Biswas, U. Jana, J. Org. Chem. 2010,
75, 1674–1683; f) U. Jana, S. Biswas, S. Maiti, Eur. J. Org.
Chem. 2008, 5798–5800; g) S. Biswas, S. Maiti, U. Jana, Eur. J.
Org. Chem. 2009, 2354–2359.
[8] a) C. Czekelius, E. M. Carreira, Org. Lett. 2004, 6, 4575–4577;
b) J. Wang, H. Li, L. Zu, W. Wang, Org. Lett. 2006, 8, 1391–
1394; c) -T. Bui, S. Syed, C. F. Barbas III, J. Am. Chem. Soc.
2009, 131, 8758–8759; d) T. Okino, Y. Hoashi, T. Furukawa,
X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119–125; e)
A. Cote, V. N. G. Lindsay, A. B. Charette, Org. Lett. 2007, 9,
85–87.
[9] a) E. Corey, H. Estreicher, Tetrahedron Lett. 1980, 21, 1113; b)
P. Dampawan, Tetrahedron Lett. 1982, 23, 135; c) W. E. No-
land, Chem. Rev. 1955, 55, 137.
[10] J. Boelle, R. Schneider, P. Gerardin, B. Loubinoux, P. Maien-
fisch, A. Rindlisbacher, Pestic. Sci. 1998, 54, 304–307.
[11] a) P. W. Brian, J. F. Grove, J. C. McGowan, Nature 1946, 158,
876–877; b) J. C. McGowan, P. W. Brian, H. G. Hemming, Ann.
Appl. Biol. 1948, 35, 25–36.
[24] a) C.-W. Kuo, C.-C. Wang, H.-L. Fang, B. R. Raju, V. Kavala,
P. M. Habib, C.-F. Yao, Molecules 2009, 14, 3952–3963, and
references cited therein; b) N. Azizi, F. Arynasab, M. R. Saidi,
Org. Biomol. Chem. 2006, 4, 4275–4277.
[25] a) R. Ballini, G. Bosica, D. Fiorini, A. Palmieri, Green Chem.
2005, 7, 825–827, and references cited therein.
[26] a) Q. Liao, L. Zhang, F. Wang, S. Li, C. Xi, Eur. J. Org. Chem.
2010, 6545–6555, and references cited therein; b) R.-L. Yan, J.
Luo, C.-X. Wang, C.-W. Ma, G.-S. Huang, Y.-M. Liang, J. Org.
Chem. 2010, 75, 5395–5397; c) C. V. Galliford, K. A. Scheidt,
J. Org. Chem. 2007, 72, 1811–1813.
[27] Primary and tertiary amines were less effective relative to sec-
ondary amines, and ketones did not react. These results indi-
cated that an iminium ion is formed from the aldehyde with
the reaction of secondary amines.
[12] a) O. Schales, H. A. Graefe, J. Am. Chem. Soc. 1952, 74, 4486–
4490; b) O. Dann, E. F. Moller, Chem. Ber. 1949, 82, 76–92; c)
K.-Y. Zee-Cheng, C. C. Cheng, J. Med. Chem. 1969, 12, 157–
161; d) A. Plenevaux, S. L. Dewey, J. S. Fowler, M. Guillaume,
P. Wolf, J. Med. Chem. 1990, 33, 2015–2019; e) A. Rosowsky,
C. E. Mota, J. E. Wright, J. H. Freisheim, J. J. Heusner, J. J.
McCormack, S. F. Queener, J. Med. Chem. 1993, 36, 3103–
3112.
[28] Lewis-acid-mediated activation of nitroalkane, see: a) R. Bala-
murugan, S. Manojveer, Chem. Commun. 2011, 47, 11143–
11145; b) Organobase and Lewis acid mediated generation of
metalo enolate of nitromethane, see: C. Palomo, M. Oiarbide,
A. Laso, Angew. Chem. 2005, 117, 3949; Angew. Chem. Int. Ed.
2005, 44, 3881–3884.
Received: January 31, 2013
Published Online:
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7