Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C6CC07773K
COMMUNICATION
Chem Commun
Segawa, T. Maekawa and K. Itami, Angew. Chem. Int. Ed., 2015, 54,
66ꢀ81; d) N. Kuhl, N. Schroeder and F. Glorius, Adv. Synth. Catal.
2014, 356, 1443ꢀ1460; e) S. A. Girard, T. Knauber and C.ꢀJ. Li,
Angew. Chem. Int. Ed., 2014, 53, 74ꢀ100; f) M. Zhang, Y. Zhang, X.
Jie, H. Zhao, G. Li and W. Su, Organic Chemistry Frontiers, 2014, 1,
843ꢀ895; g) J. WencelꢀDelord and F. Glorius, Nature Chem., 2013, 5,
369ꢀ375; h) T. Satoh and M. Miura, Chem. Eur. J., 2010, 16, 11212ꢀ
11222; i) L. Ackermann, R. Vicente and A. Kapdi, Angew. Chem. Int.
Ed., 2009, 48, 9792ꢀ9826; j) R. Giri, B.ꢀF. Shi, K. M. Engle, N.
Maugel and J.ꢀQ. Yu, Chem. Soc. Rev., 2009, 38, 3242–3272; k) R. G.
Bergman, Nature, 2007, 446, 391ꢀ393, and references cited therein.
C. Sollert, K. Devaraj, A. Orthaber, P. J. Gates and L. T. Pilarski,
Chem. Eur. J., 2015, 21, 5380ꢀ5386.
derivatives 11 – key structural motifs of naturally occurring
compounds.29
2.
3.
4.
J. Hubrich, T. Himmler, L. Rodefeld and L. Ackermann, Adv. Synth.
Catal., 2015, 357, 474ꢀ480.
a) R. K. Chinnagolla, A. Vijeta and M. Jeganmohan, Chem. Commun.,
2015, 51, 12992ꢀ12995; b) R. K. Chinnagolla and M. Jeganmohan,
Org. Lett., 2012, 14, 5246ꢀ5249.
5.
6.
7.
F. Kakiuchi, S. Kan, K. Igi, N. Chatani and S. Murai, J. Am. Chem.
Soc., 2003, 125, 1698–1699.
K. Kitazawa, T. Kochi, M. Sato and F. Kakiuchi, Org. Lett., 2009, 11,
1951ꢀ1954.
P. B. Arockiam, C. Bruneau and P. H. Dixneuf, Chem. Rev., 2012,
112, 5879ꢀ5918.
8.
9.
L. Ackermann and R. Vicente, Top. Curr. Chem., 2010, 292, 211–229.
S. Oi, E. Aizawa, Y. Ogino and Y. Inoue, J. Org. Chem., 2005, 70,
3113–3119.
10.
11.
L. Ackermann, Org. Lett., 2005, 7, 3123ꢀ3125.
W. Lu, J. Kuwabara and T. Kanbara, Macromol. Rapid Commun.,
2013, 34, 1151ꢀ1156.
12.
J. Hubrich, T. Himmler, L. Rodefeld and L. Ackermann, ACS Catal.,
2015, 5, 4089ꢀ4093.
13.
14.
15.
M. Seki, Org. Process Res. Dev., 2016, 20, 867ꢀ877.
L. Ackermann, Org. Process Res. Dev., 2015, 19, 260ꢀ269.
L. Ackermann, E. Diers and A. Manvar, Org. Lett., 2012, 14, 1154ꢀ
1157.
16.
17.
18.
19.
F. Zhang and D. R. Spring, Chem. Soc. Rev., 2014, 43, 6906ꢀ6919.
L. Ackermann, Acc. Chem. Res., 2014, 47, 281ꢀ295.
L. Ackermann, Synlett, 2007, 507ꢀ526.
Scheme 7. Weak
alkynylation.
Oꢀcoordination for (a) C–H alkenylation and (b) C–H
For arylations of benzoic acids catalyzed by metals other than
ruthenium, see: a) L. Huang, D. Hackenberger and L. J. Gooßen,
Angew. Chem. Int. Ed., 2015, 54, 12607ꢀ12611; b) C. Zhu, Y. Zhang,
J. Kan, H. Zhao and W. Su, Org. Lett., 2015, 17, 3418ꢀ3421; c) Z. Wu,
S. Chen, C. Hu, Z. Li, H. Xiang and X. Zhou, ChemCatChem, 2013, 5,
2839ꢀ2842; d) C. Arroniz, J. G. Denis, A. Ironmonger, G. Rassias and
I. Larrosa, Chem. Sci., 2014, 5, 3509ꢀ3514; e) C. Arroniz, A.
Ironmonger, G. Rassias and I. Larrosa, Org. Lett., 2013, 15, 910ꢀ913;
f) R. Giri, N. Maugel, J.ꢀJ. Li, D.ꢀH. Wang, S. P. Breazzano, L.
Saunders and J.ꢀQ. Yu, J. Am. Chem. Soc., 2007, 129, 3510ꢀ3511; g)
H. A. Chiong, Q.ꢀN. Pham and O. Daugulis, J. Am. Chem. Soc., 2007,
129, 9879ꢀ9884, and references cited therein.
L. Ackermann, R. Born and R. Vicente, ChemSusChem., 2009, 546ꢀ
549.
S. De Sarkar, W. Liu, S. I. Kozhushkov and L. Ackermann, Adv.
Synth. Catal., 2014, 356, 1461ꢀ1479.
K. M. Engle, T.ꢀS. Mei, M. Wasa and J.ꢀQ. Yu, Acc. Chem. Res.,
2012, 45, 788ꢀ802.
For detailed information, see the Supporting Information.
L. Ackermann, Chem. Rev., 2011, 111, 1315ꢀ1345.
L. Ackermann, R. Vicente, H. K. Potukuchi and V. Pirovano, Org.
Lett., 2010, 12, 5032ꢀ5035.
S. Warratz, C. Kornhaaß, A. Cajaraville, B. Niepötter, D. Stalke and
L. Ackermann, Angew. Chem. Int. Ed., 2015, 54, 5513ꢀ5517.
H. Zhao, T. Zhang, T. Yan and M. Cai, J. Org. Chem, 2015, 80, 8849ꢀ
8855.
a) A. Bechtoldt, C. Tirler, K. Raghuvanshi, S. Warratz, C. Kornhaaß,
L. Ackermann, Angew. Chem. Int. Ed. 2016, 55, 264ꢀ267; b) L.
Ackermann and J. Pospech, Org. Lett., 2011, 13, 4153ꢀ4155.
J. J. Beck and S.ꢀC. Chou, J. Nat. Prod. , 2007, 70, 891ꢀ900.
The electronꢀrich phosphine ligand PCy3 is proposed to facilitate the
C–H functionalization on the weakly coordinating benzoic acid.
Conclusions
In summary, we have developed the first ruthenium(II)ꢀcatalyzed C–
H functionalization of weakly Oꢀcoordinating arenes with organic
halides. Thus,
a
versatile phosphineꢀmodified30 ruthenium(II)
biscarboxylate catalyst enabled C–H arylations of benzoic acids with
excellent positional selectivity and ample scope. The facile C–H
ruthenation manifold enabled the direct arylation of aromatic and
heteroaromatic carboxylic acids. Furthermore, the unique synthetic
utility of the ruthenium(II) catalysis regime also set the stage for
siteꢀselective C–H olefinations and C–H alkynylations of benzoic
acids under otherwise identical reaction conditions. Further studies
on ruthenium(II)ꢀcatalyzed C–H functionalization by weak
coordination are ongoing in our laboratories and will be reported in
due course.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Acknowledgements
Generous support by the European Research Council under the
European Community’s Seventh Framework Program (FP7
2007–2013)/ERC Grant agreement no. 307535, and the CSC
(fellowships to M.R. and C.Z.) is gratefully acknowledged.
29.
30.
References
1.
Representative reviews on C–H activation: a) J. G. Kim, K. Shin and
S. Chang, Top. Organomet. Chem., 2016, 55, 29ꢀ51; b) O. Daugulis,
J. Roane and L. D. Tran, Acc. Chem. Res., 2015, 48, 1053ꢀ1064; c) Y.
4 | Chem. Commun., 2016, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins