B. Lygo et al. / Tetrahedron Letters 50 (2009) 3363–3365
3365
with previously reported data4g and 7b by comparison of HPLC
retention times with previously published data.6c As yet, we have
not been able to unambiguously establish the absolute stereochem-
istry of Michael adducts 7c, 7e and 7g and so the signs of rotation
are given in Table 4. It should be noted that PTC 1 also gives (S)-
selectivity in the corresponding alkylation reactions (Table 1) and
so the Michael additions may be proceeding via similar ion-pair
intermediates to those proposed previously for the corresponding
alkylation reactions.1
In conclusion, we have shown that use of a co-catalyst can
greatly enhance the effectiveness of KOH-mediated asymmetric
PTC Michael additions involving glycine imine 2. The enantioselec-
tivities obtained using this method generally exceed those previ-
ously reported for the same substrates using alternative cinchona
alkaloid PTC procedures.4g,h,5 We are currently investigating the
application of this chemistry in target synthesis.
involving silylketene acetals see: Tozawa, T.; Yamane, Y.; Mukaiyama, T.
Chem. Lett. 2006, 35, 56.
9. Reagent grade KOH pellets were purchased from Fisher Scientific, UK and used
as supplied.
10. For an example of crown ethers as co-catalysts for PTC asymmetric alkylations
see: Shirakawa, S.; Yamamoto, K.; Kitamura, M.; Ooi, T.; Maruoka, K. Angew.
Chem., Int. Ed. 2005, 44, 625.
11. For an example of mesitol as a co-catalyst for PTC eliminations see: Makoswa,
M.;
Chesnokov, A. Tetrahedron 2000, 56, 3553.
12. (a) Lygo, B.; Gardiner, S.; McLeod, M. C.; To, D. C. M. Org. Biomol. Chem. 2007, 5,
2283; (b) Lygo, B.; To, D. C. M. Tetrahedron Lett. 2001, 42, 1343.
13. Representative procedure: Potassium hydroxide (19 mg, 0.34 mmol) was added
to a solution of PTC 1 (10.5 mg, 10 mol %) and mesitol (2.3 mg, 10 mol %) in
dichloromethane (1 mL) at 0 °C and the mixture was stirred for 30 min. During
this time a colour change from yellow to orange/brown was observed. The
mixture was then cooled to ꢀ78 °C and a solution of glycine imine 2 (50 mg,
0.17 mmol) in dichloromethane (1 mL) was added, followed by methyl acrylate
(23
lL, 0.26 mmol). The reaction mixture was stirred at ꢀ78 °C until complete
by TLC (8 h), and then immediately filtered through a plug of magnesium
sulfate. After warming to room temperature the solution was concentrated
under reduced pressure to afford the crude product 7a. Yields were calculated
by 1H NMR using veratrole as an internal standard. An aliquot of the crude
product was purified by flash column chromatography on silica gel (90:9:1,
Acknowledgements
petroleum ether/EtOAc/Et3 N) to give 7a as
a colourless oil, Rf 0.25 (9:1
petroleum ether/EtOAc); ½a D
ꢁ
ꢀ96.0 (98% ee, c 0.7 in CHCl3); mmax (film)/cmꢀ1
2977, 1736, 1623, 1445, 1368, 1152; 1H NMR (400 MHz, CDCl3)4h 7.66–7.64
(2H, m, ArH), 7.46–7.31 (6H, m, ArH), 7.20–7.18 (2H, m, ArH), 3.98 (1H, dd, J
7.0, 5.5, CHCO2), 3.60 (3H, s, OCH3), 2.41–2.37 (2H, m, CH2), 2.26–2.20 (2H, m,
CH2), 1.45 (9H, s, (CH3)3); 13C NMR (100 MHz, CDCl3) 173.6 (C), 170.8 (C), 139.5
(C), 136.5 (C), 130.3 (CH), 128.8 (CH), 128.6 (CH), 128.5 (CH), 128.0 (CH), 127.8
(CH), 81.2 (C), 64.8 (CH), 51.5 (CH3), 30.5 (CH2), 28.7 (CH2), 28.0 (CH3); m/z
(ESI+) found [M+H]+ 382.1996; C23H27NO4 requires 382.2013. Rt HPLC
(Chiralcel OD–H column, 97.5:2.5 hexane/iso-propyl alcohol, 0.5 mL/min,
254 nm) 12.9 min (R)-isomer, 15.8 min (S)-isomer.
Financial support for this work was provided by EPSRC and
GlaxoSmithKline.
References and notes
1. For reviews covering recent developments in asymmetric phase-transfer
catalysis see: (a) Maruoka, K. Org. Proc. Res. Dev. 2008, 12, 679; (b)
Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656; (c) Ooi, T.; Maruoka,
K. Angew. Chem., Int. Ed. 2007, 46, 4222; (d) Vachon, J.; Lacour, J. Chimia 2006,
60, 266; (e) O’Donnell, M. J. Acc. Chem. Res. 2004, 37, 506; (f) Lygo, B.; Andrews,
B. I. Acc. Chem. Res. 2004, 37, 518; (g) Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103,
3013.
14. Analytical data for previously unreported compounds: Compound 7d. Pale yellow
oil, Rf 0.45 (9:1 petroleum ether/EtOAc); [
a
]
ꢀ53.4 (91% ee, c 0.7 in CHCl3);
D
mmax (CHCl3)/cmꢀ1 3006, 2962, 2934, 2874, 1726, 1153; 1H NMR (400 MHz,
CDCl3) 7.63 (2H, d, J 9.0, ArH), 7.48–7.42 (3H, m, ArH), 7.36–7.31 (3H, m, ArH),
7.18–7.15 (2H, m, ArH), 3.95 (1H, app t, J 6.0, CHCO2), 2.59–2.47 (2H, m, CH2),
2.41 (2H, app t, J 7.5, COCH2), 2.21–2.15 (2H, m, CH2), 1.58–1.50 (2H, m, CH2),
1.44 (9H, s, (CH3)3) 1.35–1.25 (2H, m, CH2), 0.88 (3H, t, J 7.0, CH3). 13C NMR
(100 MHz, CDCl3) 210.7 (C), 171.1 (C), 170.4 (C), 139.5 (C), 136.5 (C), 130.3
(CH), 128.8 (CH), 128.6 (CH), 128.5 (CH), 128.0 (CH), 127.7 (CH), 81.1 (C), 64.8
(CH), 42.6 (CH2), 38.9 (CH2), 28.1 (CH2), 27.8 (CH2), 25.9 (CH2), 22.4 (CH2), 13.9
(CH3); m/z (ESI+) found [M+H]+ 408.2518; C26H34NO3 requires 408.2460. Rt
HPLC (Chiralcel OD–H column, 99:1 hexane/ethanol, 0.5 mL/min, 254 nm)
12.3 min (R)-isomer, 14.9 min (S)-isomer.
2. For a review of glycine imine chemistry see: O’Donnell, M. J. Aldrichim. Acta.
2001, 34, 3.
3. For examples of application in target synthesis see: (a) Wang, Y.-G.; Ueda, M.;
Wang, X.; Han, Z.; Maruoka, K. Tetrahedron 2007, 63, 6042; (b) Lee, J.-H.; Jeong,
B.-S.; Ku, J.-M.; Jew, S.-S.; Park, H.-G. J. Org. Chem. 2006, 71, 6690; (c) Lygo, B.;
Slack, D.; Wilson, C. Tetrahedron Lett. 2005, 46, 6629; (d) Fukuta, Y.; Ohshima,
T.; Gnanadesikan, V.; Shibuguchi, T.; Nemoto, T.; Kisugi, T.; Okino, T.; Shibasaki,
M. Proc. Nat. Acad. Sci. U.S.A. 2004, 101, 5433; (e) Lygo, B.; Humphreys, L. D.
Synlett 2004, 2809; (f) Kim, S.; Lee, J.; Lee, T.; Park, H.-G.; Kim, D. Org. Lett. 2003,
5, 2703; (g) Armstrong, A.; Scutt, J. N. Org. Lett. 2003, 5, 2331; (h) Lygo, B.;
Andrews, B. I. Tetrahedron Lett. 2003, 44, 4499; (i) Boeckman, R. K., Jr.; Clark, T.
J.; Shook, B. C. Org. Lett. 2002, 4, 2109.
4. For examples of highly enantioselective PTC Michael additions involving
glycine imines see: (a) Elsner, P.; Bernardi, L.; Salla, G. D.; Overgaard, J.;
Jorgensen, K. A. J. Am. Chem. Soc. 2008, 130, 4897; (b) Bernardi, L.; Lopez-
Cantarero, J.; Niess, B.; Jorgensen, K. A. J. Am. Chem. Soc. 2007, 129, 5772; (c)
Shibuguchi, T.; Mihara, H.; Kuramochi, A.; Ohshima, T.; Shibasaki, M. Chem.
Asian J. 2007, 2, 794; (d) Arai, S.; Takahashi, F.; Tsuji, R.; Nishida, A.
Heterocycles 2006, 67, 495; (e) Lygo, B.; Allbutt, B.; Kirton, E. H. M.
Tetrahedron Lett. 2005, 46, 4461; (f) Akiyama, T.; Hara, M.; Fuchibe, K.;
Sakamoto, S.; Yamaguchi, K. Chem. Commun. 2003, 1734; (g) Corey, E. J.;
Zhang, F-Y. Org. Lett. 2000, 2, 1097; (h) Corey, E. J.; Noe, M. C.; Xu, F.
Tetrahedron Lett. 1998, 39, 5347.
5. For highly enantioselective Michael additions of imine 2 mediated by cinchona
alkaloid-derived quaternary ammonium salts in conjunction with phosphazine
bases see: O’Donnell, M. J.; Delgado, F.; Dominguez, E.; de Blas, J.; Scott, W. L.
Tetrahedron: Asymmetry 2001, 12, 821.
6. For other examples of highly enantioselective Michael additions of glycine
imines see: (a) Tsubogo, T.; Saito, S.; Seki, K.; Yamashita, Y.; Kobayashi, S. J. Am.
Chem. Soc. 2008, 130, 13321; (b) Ryoda, A.; Yajima, N.; Haga, T.; Kumamoto, T.;
Nakanishi, W.; Kawahata, M.; Yamaguchi, K.; Ishikawa, T. J. Org. Chem. 2008, 73,
133; (c) Ishikawa, T.; Araki, Y.; Kumamoto, T.; Seki, H.; Fukuda, K.; Isobe, T.
Chem. Commun. 2001, 245.
Compound 7e. Pale yellow oil, Rf 0.2 (9:1 petroleum ether/EtOAc); [
a
]
ꢀ15.6
D
(91% ee, c 0.7 in CHCl3);
m
max (film)/cmꢀ1 3059, 2976, 2933, 1731, 1685, 1150;
1H NMR (400 MHz, CDCl3) 7.97–7.94 (2H, m, ArH), 7.67–7.64 (2H, m, ArH),
7.58–7.53 (1H, m, ArH), 7.48–7.30 (8H, m, ArH), 7.17–7.13 (2H, m, ArH), 4.08
(1H, dd, J 6.5, 5.5, CHCO2), 3.18–2.99 (2H, m, CH2), 2.36–2.22 (2H, m, CH2), 1.46
(9H, s, (CH3)3); 13C NMR (100 MHz, CDCl3) 199.7 (C), 171.1 (C), 170.6 (C), 139.5
(C), 136.9 (C), 136.5 (C), 132.9 (CH), 130.3 (CH), 128.8 (CH), 128.6 (CH), 128.6
(CH), 128.5 (CH), 128.1 (CH), 128.0 (CH), 127.7 (CH), 81.2 (C), 64.8 (CH), 34.7
(CH2), 28.2 (CH2), 28.1 (CH3); m/z (ESI+) found [M+H]+ 428.2207; C29H30NO3
requires 428.2220.
15. The enantiomeric excess of 7e was determined by conversion to 2-tert-
butoxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrole, followed by HPLC analysis:
the crude imine 7e was hydrolyzed by addition of a solution of 15% aqueous
citric acid (1 mL) and tetrahydrofuran (2 mL). The resulting solution was
stirred at rt for 2 h then diluted with dichloromethane (2 mL). The organic
layer was washed with brine (3 ꢂ 3 mL), dried over magnesium sulfate and
concentrated under reduced pressure. The residue was purified by column
chromatography on silica gel (9:1 petroleum ether/EtOAc) to afford 2-tert-
butoxycarbonyl-5-phenyl-3,4-dihydro-2H-pyrrole (69% overall from 2) as a
colourless oil, Rf 0.2 (9:1 petroleum ether/EtOAc); [a] +88.0 (91% ee, c 0.7 in
D
CHCl3); mmax (film)/cmꢀ1 2978, 1732, 1154; 1H NMR (400 MHz, CDCl3) 7.90–
7.88 (2H, m, ArH), 7.47–7.38 (3H, m, ArH), 4.84–4.80 (1H, m, H-2), 3.17–3.08
(1H, m, H-4a), 3.02–2.95 (1H, m, H-4b), 2.37–2.28 (1H, m, H-3a), 2.21–2.12 (1H,
m, H-3b), 1.50 (9H, s, (CH3)3); 13C NMR (100 MHz, CDCl3) 175.8 (C), 172.3 (C),
134.1 (C), 130.8 (CH), 128.5 (CH), 128.1 (CH), 81.1 (C), 75.4 (CH), 35.4 (CH2),
28.1 (CH3), 26.8 (CH2); m/z (ESI+) found [M+H]+ 246.1487; C15H19NO2 requires
246.1489. Rt HPLC (Chiralcel OD–H column, 90:10 hexane/iso-propyl alcohol,
0.5 mL/min; 254 nm) 11.3 min (major), 19.8 min (minor).
7. (a) Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997, 38, 8595; (b) Lygo, B.;
Crosby, J.; Lowdon, T. R.; Peterson, J. A.; Wainwright, P. G. Tetrahedron 2001, 57,
2403.
8. For an example of the use of
a cinchona alkaloid-derived quaternary
16. Besson, M.; Delbecq, F.; Gallezot, P.; Neto, S.; Pinel, C. Chem. Eur. J. 2000, 6, 949.
17. Ibrahim, H. H.; Lubell, W. D. J. Org. Chem. 1993, 58, 6438.
ammonium phenoxide as catalyst for homogeneous Michael additions
a