Journal of Medicinal Chemistry
Article
(from the C-terminal to the cleavage site) are called nonprimed
binding site and primed binding site, respectively.
Neefjes, J. J.; Filippov, D. V.; van der Marel, G. A.; Dantuma, N. P.;
Overkleeft, H. S. A Fluorescent Broad-Spectrum Proteasome Inhibitor
for Labeling Proteasomes in Vitro and in Vivo. Chem. Biol. 2006, 13,
1217−1226. (c) Geurink, P. P.; Liu, N.; Spaans, M. P.; Downey, S. L.;
van den Nieuwendijk, A. M. C. H.; van der Marel, G. A.; Kisselev, A.
F.; Florea, B. I.; Overkleeft, H. S. Incorporation of Fluorinated
Phenylalanine Generates Highly Specific Inhibitor of Proteasome’s
Chymotrypsin-like Sites. J. Med. Chem. 2010, 53, 2319−2323.
(27) Parlati, F.; Lee, S. J.; Aujay, M.; Suzuki, E.; Levitsky, K.; Lorens,
J. B.; Micklem, D. R.; Ruurs, P.; Sylvain, C.; Lu, Y.; Shenk, K. D.;
Bennett, M. K. Carfilzomib can induce tumor cell death through
selective inhibition of the chymotrypsin-like activity of the proteasome.
Blood 2009, 114, 3439−3447.
(16) (a) Yoshida, K.; Yamaguchi, K.; Mizuno, A.; Unno, Y.; Asai, A.;
Sone, T.; Yokosawa, H.; Matsuda, A.; Arisawa, M.; Shuto, S. Three-
dimensional structure−activity relationship study of belactosin A and
its stereo- and regioisomers: development of potent proteasome
inhibitors by a stereochemical diversity-oriented strategy. Org. Biomol.
Chem. 2009, 7, 1868−1877. (b) Yoshida, K.; Yamaguchi, K.; Sone, T.;
Unno, Y.; Asai, A.; Yokosawa, H.; Matsuda, A.; Arisawa, M.; Shuto, S.
Synthesis of 2,3- and 3,4-methanoamino acid equivalents with
stereochemical diversity and their conversion into the tripeptide
proteasome inhibitor belactosin a and its highly potent cis-cyclo-
propane stereoisomer. Org. Lett. 2008, 10, 3571−3574.
(28) Demo, S. D.; Kirk, C. J.; Aujay, M. A.; Buchholz, T. J.; Dajee,
M.; Ho, M. N.; Jiang, J.; Laidig, G. J.; Lewis, E. R.; Parlati, F.; Shenk, K.
D.; Smyth, M. S.; Sun, C. M.; Vallone, M. K.; Woo, T. M.; Molineaux,
C. J.; Bennett, M. K. Antitumor Activity of PR-171, a Novel
Irreversible Inhibitor of the Proteasome. Cancer Res. 2007, 67,
6383−6391.
(29) (a) Borissenko, L.; Groll, M. 20S proteasome and its inhibitors:
crystallographic knowledge for drug development. Chem. Rev. 2007,
107, 687−717. (b) Arastu-Kapur, S.; Anderl, J. L.; Kraus, M.; Parlati,
F.; Shenk, K. D.; Lee, S. J.; Muchamuel, T.; Bennett, M. K.; Driessen,
C.; Ball, A. J.; Kirk, C. J. Nonproteasomal Targets of the Proteasome
Inhibitors Bortezomib and Carfilzomib: a Link to Clinical Adverse
Events. Clin. Cancer Res. 2011, 17, 2734−2743.
(30) (a) Honda, R.; Tanaka, H.; Yasuda, H. Oncoprotein MDM2 is a
ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 1997, 420,
25−27. (b) Levine, A. J. p53, the Cellular Gatekeeper for Growth and
Division. Cell 1997, 88, 323−331. (c) Vogelstein, B.; Lane, D.; Levine,
A. J. Surfing the p53 network. Nature 2000, 408, 307−310.
(d) Vousden, K. H.; Lu, X. Live or let die: the cell’s response to
p53. Nature Rev. Cancer 2002, 2, 594−604. (e) Oren, M. Decision
making by p53: life, death and cancer. Cell Death Differ. 2003, 10,
431−442.
(31) (a) Duriez, P. J.; Shah, G. M. Cleavage of poly(ADP-ribose)
polymerase: a sensitive parameter to study cell death. Biochem. Cell
Biol. 1997, 75, 337−349. (b) Kaufmann, S. H.; Desnoyers, S.;
Ottaviano, Y.; Davidson, N. E.; Poirier, G. G. Specific Proteolytic
Cleavage of Poly(ADP-ribose) Polymerase: An Early Marker of
Chemotherapy-Induced Apoptosis. Cancer Res. 1993, 53, 3976−3985.
(32) Williamson, M. J.; Blank, J. L.; Bruzzese, F. J.; Cao, Y.; Daniels, J.
S.; Dick, L. R.; Labutti, J.; Mazzola, A. M.; Patil, A. D.; Reimer, C. L.;
Solomon, M. S.; Stirling, M.; Tian, Y.; Tsu, C. A.; Weatherhead, G. S.;
Zhang, J. X.; Rolfe, M. Comparison of biochemical and biological
effects of ML858 (salinosporamide A) and bortezomib. Mol. Cancer
Ther. 2006, 5, 3052−3061.
(17) Kawamura, S.; Unno, Y.; Tanaka, M.; Sasaki, T.; Yamano, A.;
Hirokawa, T.; Kameda, T.; Asai, A.; Arisawa, M.; Shuto, S.
Investigation of the Non-Covalent Binding Mode of Covalent
Proteasome Inhibitors around the Transition State by Combined
Use of Cyclopropylic Strain-Based Conformational Restriction and
Computational Modeling. J. Med. Chem. 2013, 56, 5829−5842.
(18) Kawamura, S.; Unno, Y.; Hirokawa, T.; Asai, A.; Arisawa, M.;
Shuto, S. Rational Hopping of a Peptidic Scaffold into Non-Peptidic
Scaffolds: Structurally Novel Potent Proteasome Inhibitors Derived
from a Natural Product, Belactosin A. Chem. Commun. 2014, 50,
2445−2447.
(19) Kawamura, S.; Unno, Y.; Asai, A.; Arisawa, M.; Shuto, S. Design
and Synthesis of the Stabilized Analogs of Belactosin A with the
Unnatural cis-Cyclopropane Structure. Org. Biomol. Chem. 2013, 11,
6615−6622.
(20) Although the β-lactam analogue of the belactosin derivative did
not show potent proteasome inhibitory activity, Corey and co-workers
successfully developed a stable analogue of salinosporamide A with a
β-lactam warhead: Hogan, P. C.; Corey, E. J. Proteasome Inhibition by
a Totally Synthetic β-Lactam Related to Salinosporamide A and
Omuralide. J. Am. Chem. Soc. 2005, 127, 15386−15387.
(21) Piva, R.; Ruggeri, B.; Williams, M.; Costa, G.; Tamagno, I.;
Ferrero, D.; Giai, V.; Coscia, M.; Peola, S.; Massaia, M.; Pezzoni, G.;
Allievi, C.; Pescalli, N.; Cassin, M.; di Giovine, S.; Nicoli, P.; de Feudis,
P.; Strepponi, I.; Roato, I.; Ferracini, R.; Bussolati, B.; Camussi, G.;
Jones-Bolin, S.; Hunter, K.; Zhao, H.; Neri, A.; Palumbo, A.; Berkers,
C.; Ovaa, H.; Bernareggi, A.; Inghirami, G. CEP-18770: A novel, orally
active proteasome inhibitor with a tumor-selective pharmacologic
profile competitive with bortezomib. Blood 2008, 111, 2765−2775.
(22) Kupperman, E.; Lee, E. C.; Cao, Y.; Bannerman, B.; Fitzgerald,
M.; Berger, A.; Yu, J.; Yang, Y.; Hales, P.; Bruzzese, F.; Liu, J.; Blank, J.;
Garcia, K.; Tsu, C.; Dick, L.; Fleming, P.; Yu, L.; Manfredi, M.; Rolfe,
M.; Bolen, J. Evaluation of the Proteasome Inhibitor MLN9708 in
Preclinical Models of Human Cancer. Cancer Res. 2010, 70, 1970−
1980.
(33) (a) Copeland, R. A.; Pompliano, D. L.; Meek, T. D. Drug−
target residence time and its implications for lead optimization. Nature
Rev. Drug Discovery 2006, 5, 730−739. (b) Lu, H.; Tonge, P. J. Drug-
target residence time: critical information for lead optimization. Curr.
Opin. Chem. Biol. 2010, 14, 467−474. (c) Tummino, P. J.; Copeland,
R. A. Residence Time of Receptor− Ligand Complexes and Its Effect
on Biological Function. Biochemistry 2008, 47, 5481−5492.
(34) Inglis, S. R.; Woon, E. C. Y.; Thompson, A. L.; Schofield, C. J.
Observations on the Deprotection of Pinanediol and Pinacol Boronate
Esters via Fluorinated Intermediates. J. Org. Chem. 2009, 75, 468−471.
(35) Partial hydrolysis of pinanediol esters were observed.
(23) Groll, M.; Berkers, C. R.; Ploegh, H. L.; Ovaa, H. Crystal
structure of the boronic acid-based proteasome inhibitor bortezomib
in complex with the yeast 20S proteasome. Structure 2006, 14, 451−
456.
(24) Hideshima, T.; Richardson, P.; Chauhan, D.; Palombella, V. J.;
Elliott, P. J.; Adams, J.; Anderson, K. C. The Proteasome Inhibitor PS-
341 Inhibits Growth, Induces Apoptosis, and Overcomes Drug
Resistance in Human Multiple Myeloma Cells. Cancer Res. 2001, 61,
3071−3076.
(25) Pinanediol ester derivatives of the boronic acid act as prodrugs
and show almost same activities on proteasome as corresponding free
boronic acid derivatives. See ref 26.
(26) (a) Zhu, Y.; Zhao, X.; Zhu, X.; Wu, G.; Li, Y.; Ma, Y.; Yuan, Y.;
Yang, J.; Hu, Y.; Ai, L.; Gao, Q. Design, Synthesis, Biological
Evaluation, and Structure−Activity Relationship (SAR) Discussion of
Dipeptidyl Boronate Proteasome Inhibitors, Part I: Comprehensive
Understanding of the SAR of α-Amino Acid Boronates. J. Med. Chem.
2009, 52, 4192−4199. (b) Verdoes, M.; Florea, B. I.; Menendez-
Benito, V.; Maynard, C. J.; Witte, M. D.; van der Linden, W. A.; van
den Nieuwendijk, A. M. C. H.; Hofmann, T.; Berkers, C. R.; van
Leeuwen, F. W. B.; Groothuis, T. A.; Leeuwenburgh, M. A.; Ovaa, H.;
2735
dx.doi.org/10.1021/jm500045x | J. Med. Chem. 2014, 57, 2726−2735