Organic Letters
Letter
(10) For reports on the building block approach by other groups, see:
(a) Gonzalez, J.; Foti, C. J.; Elsheimer, S. J. Org. Chem. 1991, 56,
4322−4325. (b) Marcotte, S.; Gerard, B.; Pannecoucke, X.; Feasson,
́
Chem. Soc. 2012, 134, 20521−20532. (h) Baker, M. S.; Yadav, V.; Sen,
A.; Phillips, S. T. Angew. Chem., Int. Ed. 2013, 52, 10295−10299.
(19) Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Woodward, M.;
Billot, L.; Harrap, S.; Poulter, N.; Marre, M.; Cooper, M.; et al. Lancet
2007, 370, 829−840.
(20) Monte, A. P.; Marona-Lewicka, D.; Cozzi, N. V.; Nichols, D. E.
J. Med. Chem. 1993, 36, 3700−3706.
C.; Quirion, J.-C. Synthesis 2001, 929−933. (c) Mae, M.; Matsuura,
M.; Amii, H.; Uneyama, K. Tetrahedron Lett. 2002, 43, 2069−2072.
(d) Qiu, X.-l.; Qing, F.-l. J. Org. Chem. 2002, 67, 7162−7164. (e) Cox,
L. R.; DeBoos, G. A.; Fullbrook, J. J.; Percy, J. M.; Spencer, N. S.;
Tolley, M. Org. Lett. 2003, 5, 337−339. (f) Takachi, M.; Chatani, N.
Org. Lett. 2010, 12, 5132−5134. (g) Chen, Z.; Zhu, J.; Xie, H.; Li, S.;
Wu, Y.; Gong, Y. Org. Biomol. Chem. 2011, 9, 5682−5691.
(h) Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org. Lett.
2011, 13, 5560−5563. (i) Shen, X.; Zhang, W.; Ni, C.; Gu, Y.; Hu, J. J.
Am. Chem. Soc. 2012, 134, 16999−17002.
(11) For recent reports on direct ring difluoromethylation on carbon
atoms, see: (e) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R.
D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. J. Am.
Chem. Soc. 2012, 134, 1494−1497. (g) Fier, P. S.; Hartwig, J. F. J. Am.
Chem. Soc. 2012, 134, 5524−5527. (h) Iida, T.; Hashimoto, R.;
Aikawa, K.; Ito, S.; Mikami, K. Angew. Chem., Int. Ed. 2012, 51, 9535−
9538. (i) Prakash, G. K. S.; Ganesh, S. K.; Jones, J.-P.; Kulkarni, A.;
Masood, K.; Swabeck, J. K.; Olah, G. A. Angew. Chem., Int. Ed. 2012,
51, 12090−12094. (j) Fujiwara, Y.; Dixon, J. A.; O’Hara, F.; Funder, E.
́
D.; Dixon, D. D.; Rodriguez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.;
Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95−99.
(12) For selective SN2′ allylation of difluoroallylic compounds, see:
Tellier, F.; Baudry, M.; Sauvet
5992.
̂
re, R. Tetrahedron Lett. 1997, 38, 5989−
(13) For intramolecular radical cyclization of 1,1-difluoro-1-alkenes,
see: (a) Morikawa, T.; Nishiwaki, T.; Iitaka, Y.; Kobayashi, Y.
Tetrahedron Lett. 1987, 28, 671−674. (b) Morikawa, T.; Uchida, J.;
Hasegawa, Y.; Taguchi, T. Chem. Pharm. Bull. 1991, 39, 2462−2464.
(c) Itoh, T.; Sakabe, K.; Kudo, K.; Ohara, H.; Takagi, Y.; Kihara, H.;
Zagatti, P.; Renou, M. J. Org. Chem. 1999, 64, 252−265.
(14) Unreacted 1aa assisted the 1,3-allylic rearrangement of 2aa to
4aa. To suppress this undesired process, the reaction time should be
shortened by the addition of an excess of 3-bromo-3,3-difluoro-
propene.
(15) When the reaction of 2-bromophenol 1aa was quenched at an
early stage (1 min), a 16% yield of the desired product 2aa and a 4%
yield of the side product 4aa were obtained. The 2aa/4aa ratio of this
reaction (80/20) was similar to that of the reaction quenched after 30
min (83/17). This result suggests that the side product 4aa can be
formed directly via the reaction of bromophenol 1aa with 3-bromo-
3,3-difluoropropene.
(16) Reactions of 3-bromo-4-hydroxybenzonitrile with 3-bromo-3,3-
difluoropropene afforded a 79% yield of the corresponding 1,1-
difluoroallyl product with exclusive selectivity.
(17) Alternatively, thioethers 2b were also prepared via the reaction
with 1,1-difluoroallene. Treatment of 1ba with 5 equiv of 1,1-
difluoropropa-1,2-diene in the presence of 0.5 equiv of KOH (THF,
60 °C, 12 h) exclusively afforded 2ba in 79% yield. In contrast, the
reaction of bromophenols 1a with 1,1-difluoropropa-1,2-diene
selectively provided undesirably allylated products 4a.
(18) For properties of difluoromethyl-substituted compounds, see:
(a) Chang, C.-W. T.; Chen, X. H.; Liu, H.-W. J. Am. Chem. Soc. 1998,
120, 9698−9699. (b) Lu, C.-P.; Ren, C.-T.; Lai, Y.-N.; Wu, S.-H.;
Wang, W.-M.; Chen, J.-Y.; Lo, L.-C. Angew. Chem., Int. Ed. 2005, 44,
6888−6892. (c) Xu, H.-L.; Li, Z.-R.; Wu, D.; Wang, B.-Q.; Li, Y.; Gu,
F. L.; Aoki, Y. J. Am. Chem. Soc. 2007, 129, 2967−2970. (d) Kwan, D.
H.; Chen, H.-M.; Ratananikom, K.; Hancock, S. M.; Watanabe, Y.;
Kongsaeree, P. T.; Samuels, A. L.; Withers, S. G. Angew. Chem., Int. Ed.
2011, 50, 300−303. (e) Baker, M. S.; Phillips, S. T. J. Am. Chem. Soc.
2011, 133, 5170−5173. (f) Cheng, T.-C.; Roffler, S. R.; Tzou, S.-C.;
Chuang, K.-H.; Su, Y.-C.; Chuang, C.-H.; Kao, C.-H.; Chen, C.-S.;
Harn, I.-H.; Liu, K.-Y.; Cheng, T.-L.; Leu, Y.-L. J. Am. Chem. Soc. 2012,
́
134, 3103−3110. (g) Chauvigne-Hines, L. M.; Anderson, L. N.;
Weaver, H. M.; Brown, J. N.; Koech, P. K.; Nicora, C. D.; Hofstad, B.
A.; Smith, R. D.; Wilkins, M. J.; Callister, S. J.; Wright, A. T. J. Am.
1401
dx.doi.org/10.1021/ol5001582 | Org. Lett. 2014, 16, 1398−1401