Running title
Chin. J. Chem.
Pathways. Comments Inorg. Chem. 2015, 6, 300-330; (d) Hassam, M.;
Taher, A.; Arnott, G. E.; Green, I. R. van Otterlo, W. A. L.
Isomerization of Allylbenzenes. C h em . Rev. 2015, 11, 5462-5569; (e)
Vasseur, A.; Bruffaerts, J. Marek, I. Remote functionalization through
alkene isomerization. Nat Chem. 2016, 3, 209-219; (f) Molloy, J. J.;
Morack, T. Gilmour, R. Positional and Geometrical Isomerisation of
Alkenes: The Pinna cle of Atom Economy. Angew. Chem. Int. Ed. 2019,
39, 13654-13664.
Supporting Information
The supporting information for this article is available on the
Acknowledgement (optional)
Financial support from National Natural Science Foundation of
China (21825109, 21821002, 21732006), National Basic Research
Program of China (2016YFA0202900), the Strategic Priority
Research Program of Chinese Academy of Sciences
(XDB20000000), Chinese Academy of Sciences Key Research
Pro gram o f F ro n tie r S cien ces (QYZD B-SSW-SLH016) and K.C.Wong
Education Foundation, and Science and Technology Commission
of Shanghai Municipality (17JC1401200) is gratefully
acknowledged.
[4] Huang, R. Z.; Lau, K. K.; Li, Z.; Liu, T. L. Zhao, Y. Rhodium-Catalyzed
Enantioconvergent Isomerization of Homoallylic and Bishomoallylic
Secondary Alcohols. J.Am. Chem. Soc. 2018, 44, 14647-14654.
[5] Lim, H. J.; Smith, C. R. RajanBabu, T. V. Facile Pd(II)- a nd
Ni(II)-Catalyzed Isomerization of Terminal Alkenes into 2-Alke nes . J.
Org. Chem. 2009, 12, 4565-4572.
[6] Larsen, C. R. Grotjahn, D. B. Stereoselective alkene isomerization
over one position. J. Am. Chem. Soc.2012, 25, 10357-10360.
[7] (a) Zhao, J.; Cheng, B.; Chen, C. Lu, Z. Cobalt-Catalyzed Migrational
Isomerization of Styrenes. Org. Lett. 2020, 3, 837-841; (b) Zhang, S.;
Bedi, D.; Cheng, L.; Unruh, D. K.; Li, G. Findlater, M.
Cobalt(II)-Catalyzed Stereoselective Olefin Isomerization: Facile
Access to Acyclic Trisubstituted Alkenes. J. Am. Chem. Soc. 2020, 19,
8910-8917; (c) Liu, H.; Cai, C.; Ding, Y.; Chen, J.; Liu, B. Xia, Y.
References
[1] (a) Williams, D. R.; Ihle, D. C.; Plummer, S. V. Total Synthesis of
(-)-Ra tja done. Org. Lett. 2001, 3, 1383−1386; (b) Cossey, K. N.; Funk,
R.
L. Diastereoselective
Synthesis
of
2,3,6-Trisubstituted
Tetra hydropyran-4-ones via Prins Cyclizations of Enecarbama tes :ꢀA
Formal Synthesis of (+)-Ratjadone A. J. Am. Chem. Soc.2004, 126,
12216-12217; (c) Itami, K.; Yoshida, J. Multisubstituted Olefins:
Pla tform Synthesis and Applica tions to Materials Science a nd
Pha rmaceutical Chemis try. Bull. Chem. Soc. Jpn. 2006, 79, 811−824;
(d) Bonazzi, S.; Eidam, O.; Güttinger, S.; Wach, J.-Y.; Zemp, I.; Kutay,
U.; Ga dema nn, K. Anguinomycins and Derivatives: Total Syntheses,
Modeling, and Biological Evaluation of the Inhibition of
Nucleocytoplasmic Transport. J. Am. Chem. Soc. 2010, 132,
1432-1442.
Cobalt-Ca talyzed E-Selective Isomerization of Alkenes with
a
Phosphine-Am i do -Oxa zoline Ligand. ACS Omega. 2020, 20,
11655-11670.
[8] For a review on base metal catalyzed olefinisomerization, see: (a) Liu,
Q.; Liu, X. Li, B. Base-Metal-Catalyzed Olefin Isomerization Reactions.
Synthesis. 2019, 06, 1293-1310. For some reviews on base metal
catalysis, see: (b) Chen, J.-H.; Guo, J.; Lu, Z. Recent Advances in
Hydrometallation of Alkenes and Alkynes via the First Row Transition
Metal Catalysis. Chin. J. Chem. 2018, 36, 1075. (c) Wen, H; Liu, G.;
Huang, Z. Recent advances in tridentate iron and cobalt complexes
for alkene and alkyne hydrofunctionalizations, Coord. Chem . Rev.
2019, 386,138–153.
[9] (a) Damico, R. Logan, T. Isomerization of Unsaturated Alcohols with
Iron Pentacarbonyl. Preparation of Ketones a nd Aldehydes. J . Org.
Chem. 1967, 7, 2356-2358; (b) Cowherd, F. G. Von Rosenberg, J. L.
Mechanism of iron penta ca rbonyl-cata l yze d 1, 3 -hydrogen shifts. J.
Am. Chem. Soc. 1969, 8, 2157-2158; (c) Stille, J. K. Becker, Y.
Isomerization of N-allylamides and -imides to a liphatic enamides by
iron, rhodium, and ruthenium complexes. J. Org. Chem. 1980, 11,
2139-2145; (d) Iranpoor, N.; Imanieh, H.; Iran, S. Forbes, E. J. An
Improved Method for the Efficient Conversion of Unstaura ted
Alcohols, Ethers and Esters to Their Corresponding Aldehydes,
Ketones, Enol Ethers and Enol Esters. Synth. Commun. 1989, 17,
2955-2961; (e) Murai, T.; Kasai, Y.; Ishihara, H. Kato, S.
Stereoselective synthesis of N,N-divinylurea s by diiron
enneacarbonyl-catalyzed isomerization of N,N-diallylic or N-allylic
N-vinylureas. J. Org. Chem. 1992, 20, 5542-5545; (f) Ira npoor, N.
Mottaghinejad, E. Dodecacarbonyl triiron, an efficient catalyst for
photochemical isomerization of unsaturated a lcohols, ethers a nd
ester to their corresponding carbonyl compounds, enol ethers and
esters. J. Organomet. Chem. 1992, 3, 399-404; (g) Shih, K.-C. Angelici,
R. J. Iron Carbonyl-Promoted Isomerization of Olefin Esters to Their
α,β-Unsaturated Esters:ꢀ Methyl Oleate and Other Examples. J. Org.
Chem. 1996, 22, 7784-7792; (h) Crivello, J. V. Kong, S. Efficient
[2] (a) Maryanoff, B. E. Reitz, A. B. The Wittig olefination reaction and
modifications
involving
phosphoryl-sta bilized
ca rba nions.
Stereochemistry, mecha nism, a nd selected synthetic aspects. Chem.
Rev. 1989, 4, 863-927; (b) Uma, R.; Crévisy, C. Grée, R. Transposition
of Allylic Alcohols into Carbonyl Compounds Mediated by Transition
Metal Complexes. C h em . Rev. 2003, 1, 27-52; (c) Koba yashi, T.;
Ohmiya, H.; Yorimitsu, H. Oshima, K. Cobalt-Catalyzed Regioselective
Dehydrohalogenation
of
Alkyl
Halides
with
Dimethylphenylsilylmethylmagnesium Chloride. J. Am. Chem. Soc.
2008, 34, 11276-11277; (d) Bissember, A. C.; Levina, A. Fu, G. C. A
Mild, Pa lla dium-Catalyzed Method for the Dehydrohalogenation of
Alkyl Bromides: Synthetic a nd Mecha nistic Studies. J. Am. Chem. Soc.
2012, 34, 14232-14237. (e) Cao, Z.-C.; Xu, P.-L.; Luo, Q.-Y.; Li, X.-L.; Yu,
D.-G.; Fang, H. Shi, Z.-J. Conversion of Carbonyl Compounds to
Olefins via Enolate Intermediate. Chin. J. Chem . 2019, 8, 781-785. (f)
Wang, Y.; Qian, L.; Huang, Z.; Liu, G.; Huang, Z. NCP-Type Pincer
Iridium Complexes Catalyzed Transfer-Dehydrogenation of Alkanes
and Heterocycles. Chin. J. Chem. 2020, 38,837-841.
[3] For some recent reviews of alkene isomerization, see: (a) Larionov, E.;
Li, H. Mazet, C. Well-defined transition metal hydrides in catalytic
isomerizations. Chem. Commun. 2014, 69, 9816-9826; (b) Hilt, G.
Double Bond Isomerisation and Migration—New Pla ygrounds for
Transition Metal-Ca talys is. ChemCatChem. 2014, 9, 2484-2485; (c)
Biswas, S. Mecha nistic Understanding of Tra nsition-Me tal -Catalyzed
Olefin Isomerization: Metal-Hydride Insertion-Elimination vs. π-Allyl
Chin. J. Chem. 2019, 37, XXX-XXX
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
www.cjc.wiley-vch.de
This article is protected by copyright. All rights reserved.