Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C5CC03038B
COMMUNICATION
ChemComm
4
5
6
7
C-O bonds formation through boronic acids: (a) A. Kina, H.
Iwamura, T. Hayashi, J. Am. Chem. Soc., 2006, 128, 3904. (b)
M. Dowlut, D. G. Hall, J. Am. Chem. Soc., 2006, 128, 4226. (c)
S. N. Mlynarski, A. S. Karns, J. P. Morken, J. Am. Chem. Soc.,
2012, 134, 16449.
D. G. Hall, Boronic Acids, 2nd edn., Wiley-VCH: Weinheim,
2011. For reviews, please see: (b) N. Miyaura, A. Suzuki,
Chem. Rev., 1995, 95, 2457. (c) R. Martin, S. L. Buchwald,
Acc. Chem. Res., 2008, 41, 1461. (d) C. Zhu, J. R. Falck, Adv.
Synth. Catal., 2014, 356, 2395.
(a) T. Kondo, T. A. Mitsudo, Chem. Rev., 2000, 100, 3205. (b)
I. P. Beletskaya, V. P. Ananikov, Chem. Rev., 2011, 111, 1596.
(c) H. Liu, X. Jiang, Chem. Asian J., 2013, 8, 2546. (d) X. Xu, J.
Liu, J. Zhang, Y. Wang, Y. Peng, Org. Lett., 2013, 15, 550. (e)
C. Lee, Y. Liu, S. S. Badsara, Chem. Asian J., 2014, 9, 706.
(a) A. Q. Acton, Ed. Sulfur Compounds: Advances in Research
and Application; Scholarly Editions: Atlanta, GA, 2012. (b) E.
A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem., 2014, 57,
2832. (c) Sulfur-containing pharmaceuticals can be found at:
(a) A. Mishra, C. Q. Ma, P. Bӓuerle, Chem. Rev., 2009, 109,
1141. (b) H. Bürchstümmer, A. Weissenstein, D. Bilalas, F.
Würthner, J. Org. Chem., 2011, 76, 2426. (c) K. Takimiya, I.
Osaka, T. Mori, M. Nakano, Acc. Chem. Res., 2014, 47, 1493.
(a) E. Block, Angew. Chem. Int. Ed., 1992, 31, 1135. (b) D. Y.
Lin, S. Zhang, E. Block, L. C. Katz, Nature, 2005, 434, 470. (c)
N. I. Joyce, C. C. Eady, P. Silcock, N. B. Perry, J. W. van Klink, J.
Agric. Food Chem., 2013, 61, 1449.
tocopherol 3b’ in 73% yield, which has shown potential value in
complex molecule modification.
Heteroaromatics are always crucial and challenge in drug
discovery,15 whose coupling was also demonstrated in Table 3.
Compounds containing nitrogen (5a, 5b, and 5c), oxygen (5d), and
sulfur (5e and 5f) atoms all performed well. Ferrocene-containing
product 5g16 could be achieved in moderate yield, which provides
the opportunity for developing new sulfur-containing ferrocene
ligands.
This method could be readily applied to drug late-stage
diversification (Table 4A).17 Estratrien, a kind of female hormone
drug, could be easily transformed to the corresponding organic
thiosulfate salt in 94% yield, to afford sulfur-modified estratrien 6a
followed by oxidative sulfurating cross-coupling. Sulfur-decorated
Fenofibrat 6b could derive from its boronic acid ester efficiently
through a similar transformation. This method offers great potential
for the generation of drug analogue libraries. From another aspect,
this method could be carried out to establish unsymmetrical
dibenzothiophenes (DBTs), which consititute a core framework in
certain kinds of organic compounds including pharmaceuticals,
photoactive compounds, dyes, liquid crystals, and conducting
polymers (Table 4B).8,18 For example, benzo[d]naphtho[1,2-
b]thiophene which was substituted by OMe, F, or Cl could be
obtained untrammeled through this protocol followed by oxidative
dehydrogenative cyclization.19
8
9
10 (a) P. S. Herradura, K. A. Pendola, R. K. Guy, Org. Lett., 2000
,
2, 2019. (b) C. Savarin, J. Srogl, L. S. Liebeskind, Org. Lett.,
2002, 4, 4309. (c) N. Taniguchi, J. Org. Chem., 2007, 72, 1241.
(d) H. Xu, Y. Zhao, T. Feng, Y. Feng, J. Org. Chem., 2012, 77,
2878.
-
In conclusion, relying on the versatile effect of SO3 and CO2, sulfur
could be compatible with oxidizing condition in an odourless way. A
dramatic masked strategy and an interesting CO2 accelerated
phenomenon were uncovered, which have been studied by TGA.
The extensive adaptability of this sulfuration present in both
reactants renders this reaction highly efficient and practical for the
synthesis of medicinally important and materially unobtainable
units using readily available boronic acids. Further explorations for
more synthetic applications are ongoing in our laboratory.
11 (a) Z. Qiao, H. Liu, X. Xiao, Y. Fu, J. Wei, Y. Li, X. Jiang, Org.
Lett., 2013, 15, 2594. (b) Z. Qiao, J. Wei, X. Jiang, Org. Lett.,
2014, 16, 1212. (c) Y. Li, J. Pu, X. Jiang, Org. Lett., 2014‚ 16‚
2692. (d) Y. Zhang, Y. Li, X. Zhang, X. Jiang, Chem. Commun.,
2015, 51, 941. (e) X. Xiao, M. Feng, X. Jiang, Chem. Commun.,
2015, 51, 4208.
12 CCDC-1034136 (I): See the ESI† for details.
13 (a) H. Bunte, Chem. Ber., 1874, 7, 646. (b) J. T. Reeves, K.
Camara, Z. S. Han, Y. Xu, H. Lee, C. A. Busacca, C. H.
Senanayake, Org. Lett., 2014‚ 16‚ 1196.
14 The reaction proceeded from blue liquid to a viscous mixture
under N2 atmosphere, the salts could be obtained by
recrystallization in mixed solvent (volume ratio 1:1) of
NaCl(aq) and n-hexane.
15 (a) A. John, K. M. Joule, Heterocyclic Chemistry, 5th ed.;
Wiley: New York, 2010. (b) D. J. S. Jean, Jr., C. Fotsch, J. Med.
Chem., 2012, 55, 6002. (c) M. A. Düfert, K. L. Billingsley, S. L.
Buchwald, J. Am. Chem. Soc., 2013, 135, 12877.
Financial support was provided by NBRPC (973 Program,
2015CB856600), NSFC (21472050, 21272075), NCET (120178),
DFMEC (20130076110023), Fok Ying Tung Education Foundation
(141011), the program for Shanghai Rising Star (15QA1401800),
Professor of Special Appointment (Eastern Scholar) at Shanghai
Institutions of Higher Learning, and the Changjiang Scholar and
Innovative Research Team in University.
16 CCDC-1034135 (5g): See the ESI† for details.
Notes and references
17 (a) E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B.
Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter,
Science, 2011, 334, 639. (b) J. Wencel-Delord, F. Glorius, Nat.
Chem., 2013, 23, 369. (c) T. Kang, Y. Kim, D. Lee, Z. Wang, S.
Chang, J. Am. Chem. Soc., 2014, 136, 4141.
1
(a) S. V. Ley, A. W. Thomas, Angew. Chem. Int. Ed., 2003, 42,
5400. (b) E. M. Beccalli, G. Broggini, M. Martinelli, S.
Sottocornola, Chem. Rev., 2007, 107, 5318. (c) C. Liu, H.
Zhang, W. Shi, A. Lei, Chem. Rev., 2011, 111, 1780.
18 (a) S. Allard, M. Forster, B. Souharce, H. Thiem, U. Scherf,
Angew. Chem. Int. Ed., 2008, 47, 4070. (b) K. Niimi, S.
Shinamura, I. Osaka, E. Miyazaki, K. Takimiya, J. Am. Chem.
Soc., 2011, 133, 8732. (c) A. Fukazawa, D. Kishi, Y. Tanaka, S.
Seki, S. Yamaguchi, Angew. Chem. Int. Ed., 2013, 52, 12091.
(d) T. Mori, T. Nishimura, T. Yamamoto, I. Doi, E. Miyazaki, I.
Osaka, J. Am. Chem. Soc., 2013, 135, 13900.
19 (a) H. Petersen, K. P. Zeller, Synthesis, 1975, 532. (b) R. Sanz,
Y. Fernández, M. P. Castroviejo, A. Pérez, F. J. Fañanás, J.
Org. Chem., 2006, 71, 6291. (c) R. Che, Z. Wu, Z. Li, H. Xiang,
X. Zhou, Chem. Eur. J., 2014, 20, 7258.
2
(a) D. M. T. Chan, K. L. Monaco, R. Wang, M. P. Winters,
Tetrahedron Lett., 1998, 39, 2933. (b) D. A. Evans, J. L. Katz,
T. R. West, Tetrahedron Lett., 1998, 39, 2937. (c) P. Y. S. Lam,
C. G. Clark, S. Saubern, J. Adams, M. P. Winters, D. M. T.
Chan, A. Combs, Tetrahedron Lett., 1998, 39, 2941. (d) J. X.
Qiao, P. Y. S. Lam, Syn. 2011, 6, 829.
3
C-N bonds formation through boronic acids: (a) J. C. Antilla,
S. L. Buchwald, Org. Lett., 2001, 3, 2077. (b) R. E. Shade, A.
M. Hyde, J. C. Olsen, C. A. Merlic, J. Am. Chem. Soc., 2010
,
132, 1202. (c) C. Zhu, G. Li, D. H. Ess, J. R. Falck, L. Kurti, J.
Am. Chem. Soc., 2012, 134, 18253.
4 | Chem. Commun., 2015, 00, 1-3
This journal is © The Royal Society of Chemistry 2015
Please do not adjust margins