Organic Letters
Letter
1334. (f) Crich, D.; Smith, M. J. Am. Chem. Soc. 2001, 123, 9015−
groups. Once again, however, the presence of disarming
protecting groups was problematic when the donor was used
as the limiting reagent. As with our above study, this problem
could be dealt with by modifying conditions so that the donor
was used in excess. In all cases examined, under the optimal
conditions product decomposition was not observed, even with
highly reactive 2-deoxy-sugar donors.16 The fact that we were
able to use this promoter to make relatively unstable products
such as 22 to 24 without incident or modification to the
reaction conditions further demonstrates the effectiveness of
this new promoter.
In conclusion, we have described the use of phenyl(tri-
fluoroethyl)iodonium triflimide (1) as a representative of a new
class of single-component thiophilic promoters. As a water- and
air-stable white crystalline solid, the iodonium salt offers an
advantage over other glycosylation promoters through its
particular ease of handling. The salt is stable for 5 days at room
temperature and will keep for more than 6 months if stored in
the refrigerator in the dark. Furthermore, low temperatures or
additives used to remove water from the reaction, such as
molecular sieves, are not necessary to run this chemistry. The
reaction is robust, and a wide array of thioglycoside donors
were shown to cleanly and rapidly undergo glycosylations in
high yields at room temperature. Due to the mildness of the
reaction conditions, the procedure permits the construction of
sensitive glycosides, such as 2-deoxy- and 6-deoxy-sugars. We
envision that this approach will significantly facilitate
oligosaccharide synthesis and ultimately lay the foundation
for chemistries that will permit experimentalists with a limited
synthetic background to construct their own oligosaccharide
standards.
́
9020. (g) Codee, J. D. C.; Litjens, R. E. J. N.; den Heeten, R.;
Overkleeft, H. S.; van Boom, J. H.; van der Marel, G. A. Org. Lett.
2003, 5, 1519−1522. (h) Lu, S.-R.; Lai, Y.-H.; Chen, J.-H.; Liu, C.-Y.;
Mong, K.-K. T. Angew. Chem., Int. Ed. 2011, 50, 7315−7320. (i) Chu,
A.-H. A.; Nguyen, S. H.; Sisel, J. A.; Minciunescu, A.; Bennett, C. S.
Org. Lett. 2013, 15, 2566−2569.
(6) For visible light promoted thioglycoside and selenoglycoside
activation, see: (a) Wever, W. J.; Cinelli, M. A.; Bowers, A. A. Org. Lett.
2013, 15, 30−33. (b) Spell, M.; Wang, X.; Wahba, A. E.; Conner, E.;
Ragains, J. Carbohydr. Res. 2013, 369, 42−47.
(7) For the use of Bi(OTf)3 for room temperature activation of
thioglycosides, see: Goswami, M.; Ellern, A.; Pohl, N. L. B. Angew.
Chem., Int. Ed. 2013, 52, 8441−8445.
(8) (a) Zhang, J.; Martin, G. R.; DesMarteau, D. D. Chem. Commun.
2003, 2334−2335. (b) DesMarteau, D. D.; Montanari, V. Chem.
Commun. 1998, 2241−2242.
(9) (a) Montanari, V.; Kumar, K. J. Am. Chem. Soc. 2004, 126, 9528−
9529. (b) Montanari, V.; Kumar, K. Eur. J. Org. Chem. 2006, 874−877.
(c) Montanari, V.; Kumar, K. J. Fluorine Chem. 2006, 127, 565−570.
́
(10) Codee, J. D. C.; Litjens, R. E. J. N.; van den Bos, L. J.;
Overkleeft, H. S.; van der Marel, G. A. Chem. Soc. Rev. 2005, 34, 769−
782.
(11) Madhusudan, S. K.; Agnihotri, G.; Negi, D. S.; Misra, A. K.
Carbohydr. Res. 2005, 340, 1373−1377.
(12) Ma, B.; Simala-Grant, J. L.; Taylor, D. E. Glycobiology 2006, 16,
158R−184R.
(13) Stenutz, R.; Weintraub, A.; Widmalm, G. FEMS Microbiol. Rev.
2006, 30, 382−403.
̌
̌
(14) Kren, V.; Rezanka, T. FEMS Microbiol. Rev. 2008, 32, 858−889.
(15) For select recent examples where the reactivity of deoxy-sugars
caused difficulties in synthesis, see: (a) Shan, M.; Sharif, E. U.;
O’Doherty, G. Angew. Chem., Int. Ed. 2010, 49, 9492−9495. (b) Calin,
O.; Eler, S.; Hahm, H. S.; Seeberger, P. H. Chem.Eur. J. 2013, 19,
3995−4002.
(16) (a) Hou, D.; Lowary, T. L. Carbohydr. Res. 2009, 344, 1911−
1940. (b) Borovika, A.; Nagorny, P. J. Carb. Chem. 2012, 31, 255−283.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and characterization of all new
compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank Tufts University and the National Institutes of
Health (CA125033 to K.K.) for support of this work.
■
REFERENCES
(1) Varki, A. Glycobiology 1993, 3, 97−130.
(2) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357−2364.
(3) Zhu, X.; Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900−
1934.
■
(4) (a) Ranade, S. C.; Demchenko, A. V. J. Carbohydr. Chem. 2013,
32, 1−43. (b) Demchenko, A. V. Curr. Org. Chem 2003, 7, 35−39.
(c) Demchenko, A. V. Synlett 2003, 1225−1240.
(5) For examples of metal-free thioglycoside activation, see:
(a) Nicolaou, K. C.; Seitz, S. P.; Papahatjis, D. P. J. Am. Chem. Soc.
1983, 105, 2430−2434. (b) Fugedi, P.; Garegg, P. J. Carbohydr. Res.
̈
1986, 149, C9−C12. (c) Dasgupta, F.; Garegg, P. J. Carbohydr. Res.
1988, 177, C13−C17. (d) Veeneman, G. H.; van Boom, J. H.
Tetrahedron Lett. 1990, 31, 275−278. (e) Veeneman, G. H.; van
Leeuwen, S. H.; van Boom, J. H. Tetrahedron Lett. 1990, 31, 1331−
1782
dx.doi.org/10.1021/ol5004059 | Org. Lett. 2014, 16, 1780−1782