Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC03584E
COMMUNICATION
Journal Name
demonstrably low carryover (< 0.5%) and high reproducibility.
Moreover, it extends the range of compatible chemistries from
single‐phase/single‐step reactions to the multi‐phase/multi‐
step reactions which are traditionally incompatible with
conventional microreaction systems.
We thank the Novartis MIT Center for Continuous
Manufacturing for funding this research. CWC thanks the
National Science Foundation Graduate Research Fellowship
Program for support under Grant No. 1122374.
Notes and references
1
2
K. C. Nicolaou, Angew. Chem. Int. Edit., 2014, 53, 9128.
A. G. Godfrey, T. Masquelin, H. Hemmerle, Drug Discov.
Today, 2013, 18, 795‐802.
X. Niu, F. Gielen, J. B. Edel, A. J. deMello, Nat. Chem., 2011,
437; R. Ostafe, R. Prodanovic, W. L. Ung, D. A. Weitz, R.
Fischer, Biomicrofluidics, 2014, 8, 041102.
A. Buitrago Santanilla, E. L. Regalado, T. Pereira, M. Shevlin,
K. Bateman, L.‐C. Campeau, J. Schneeweis, S. Berritt, Z.‐C.
Shi, P. Nantermet, Y. Liu, R. Helmy, C. J. Welch, P. Vachal, I.
3
3,
Fig. 2. (a) Illustration of multi‐phase segmented flow in the oscillatory flow reactor. (b)
Suzuki‐Miyaura cross‐coupling reactions used in this study. Reaction time dependent
yields of (c) reaction phenylboronic acid and (d) reaction with 3‐thenylboronic acid in
batch and in OFR under argon at 65 ˚C.
4
W. Davies, T. Cernak, S. D. Dreher, Science, 2015, 347, 49; C.
K. Z. Andrade, A. R. Dar, Tetrahedron, 2016, 72, 7375.
M. Peplow, Nature, 2014, 512, 20; R. J. Ingham, C.
5
Battilocchio, D. E. Fitzpatrick, E. Sliwinski, J. M. Hawkins, S. V.
Ley, Angew. Chem. Int. Ed., 2015, 54, 144; B. Ahmed‐Omer,
E. Sliwinski, J. P. Cerroti, S. V. Ley, Org. Process Res. Dev.,
2016, 20, 1603; B. J. Reizman, K. F. Jensen, Acc. Chem. Res.,
2016, 49, 1786.
Fig. 3. Two‐step synthesis of 2‐(2‐((2,6‐dichlorophenyl)amino)phenyl)acetic acid
(diclofenac).
6
7
J. E. Hochlowski, P.A. Searle, N. P. Tu, J. Y. Pan, S. G. Spanton,
S. W. Djuric, J. Flow Chem., 2011, 2, 56; J.D. Suther‐land, N.
As a final demonstration of the platform’s flexibility, we
demonstrate the multi‐step synthesis of the 2‐(2‐((2,6‐
dichlorophenyl)amino)phenyl)acetic acid, the nonsteroidal anti‐
inflammatory drug (diclofenac) (Fig. 3). The two‐step diclofenac
synthesis15 involves a Buchwald‐Hartwig amination followed by
cleavage of a tert‐butyl ester performed at distinct reaction
temperatures of 90 ˚C and 40 ˚C, respectively, with residence
times of 20 min and 10 min, respectively. For the Buchwald‐
Hartwig amination between 2,6‐dichloroaniline and tert‐butyl
2‐(2‐bromophenyl)acetate, substrate solutions were carefully
prepared and kept inert with toluene saturated nitrogen due to
air sensitivity. Various Pd2(dba)3‐Buchwald phosphine ligands16
(Brettphos, Xphos, and Sphos) systems and corresponding
precatalysts were tested. The highest conversion of 41.8%
(calculated from the HPLC peak of tert‐butyl 2‐(2‐
bromophenyl)acetate) was achieved with precatalyst Sphos Pd
G4. The achieved conversion was comparable to the similarly
performed batch reaction which showed 45.8% conversion at
90 ˚C for 20 minutes. It was also comparable with reported
yields of batch reactions (47 – 85%) with similar substrates.16
After the first reaction, 14 µL acetonitrile with 0.1 vol% of formic
acid was injected into the crude reaction mixture at the online
injection junction (Fig. 1). The cleavage reaction showed near‐
100% conversion, and the final product diclofenac was isolated
and confirmed by MS (Fig. S9) and 1H NMR (Fig. S10 and S11).
In conclusion, we report a droplet‐based automated
synthesis platform for efficient reaction screening, small‐scale
product isolation, and quantification of diverse medicinal
P. Tu, T. A. Nemcek, P. A. Searle, J. E. Hochlowski, S. W.
Djuric, J. Y. Pan, J. Lab. Autom., 2014, 19, 176; N. P. Tu, P. A.
Searle, K. Sarris, J. Lab. Autom., 2016, 21, 459.
B. Desai, K. Dixon, E. Farrant, Q. Feng, K. R. Gibson, W. P. van
Hoorn, J. Mills, T. Morgan, D. M. Parry, M. K. Ramjee, C. N.
Selway, G. J. Tarver, G. Whitlock, A. G. Wright, J. Med. Chem.,
2013, 56, 3033.
8
9
T. Rodrigues, N. Hauser, D. Reker, M. Reutlinger, T.
Wunderlin, J. Hamon, G. Koch, G. Schneider, Angew. Chem.
Int. Ed., 2015, 54, 1551.
W. Czechtizky, J. e. Dedio, B. Desai, K. Dixon, E. Farrant, Q.
Feng, T. Morgan, D. M. Parry, M. K. Ramjee, C. N. Selway,
ACS Med. Chem. Lett., 2013, 4, 768.
10 L. Malet‐Sanz, F. Susanne, J. Med. Chem., 2012, 55, 4062; D.
K. B. Mohamed, X. Yu, J. Li, J. Wu, Tetrahedron Lett., 2016,
57, 3965; C. Vaxelaire, P. Winter, M. Christ‐mann, Angew.
Chem. Int. Ed., 2011, 50, 3605; B. Gutmann, D. Cantillo, C. O.
Kappe, Angew. Chem. Int. Ed., 2015, 54, 6688.
11 T. Rodrigues, P. Schneider, G. Schneider, Angew. Chem. Int.
Ed., 2014, 53, 5750; T. Wirth, Angew. Chem. Int. Ed. 2017, 56
682; J. R. Goodell, J. P. McMullen, N. Zaborenko, J. R.
Maloney, C.‐X. Ho, K. F. Jensen, J. A. Porco, A. B. Beeler, J.
Org. Chem. 2009, 74, 6169.
,
12 N. Schneider, D. M. Lowe, R. A. Sayle, M. A. Tarselli, G. A.
Landrum, J. Med. Chem., 2016, 59, 4385; S. D. Roughley, A.
M. Jordan, J. Med. Chem., 2011, 54, 3451; R. Hili, A. K. Yudin,
Nat. Chem. Biol., 2006, 2, 284.
13 L. A. Carpino, J. Am. Chem. Soc., 1993, 115, 4397.
14 M. Abolhasani, N. C. Bruno, K. F. Jensen, Chem. Commun.,
2015, 51, 8916; M. Abolhasani, C. W. Coley, K. F. Jensen,
Anal. Chem., 2015, 87, 11130.
15 V. B. Oza, C. Smith, P. Raman, E. K. Koepf, H. A. Lashuel, H.
M. Petrassi, K. P. Chiang, E. T. Powers, J. Sachettinni, J. W.
Kelly, J. Med. Chem., 2002, 45, 321.
chemistries at the ~100
g scale, ideal for lead optimization.
16 P. Ruiz‐Castillo, S. L. Buchwald, Chem. Rev., 2016, 116
,
This new technology allows seamless integration of synthesis,
12564.
purification, and analysis on
a microliter scale with
4 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins