Journal of the American Chemical Society
Article
recorded on a SPEX-Fluorolog FL-1039 spectrofluorimeter. Optical
absorption measurements were carried out using 1 or 10 mm cuvettes
with a thermistor directly attached to the wall of the cuvette holder for
controlling the temperature. Fluorescence quantum yields, with an
estimated reproducibility of 10%, were determined using the
standard procedure by comparison with 9,10-diphenyl anthracene in
cyclohexane (ΦF = 1) and 10-methylacridiniumtriflouro methane-
sulphonate in water (ΦF = 0.99) as fluorescence standards.24 Absolute
quantum yield in the gel state was measured using a calibrated
integrating sphere in a SPEX fluorolog FL-1039 fluorimeter.25Fluor-
Fluorescence lifetimes were measured using IBH (FluoroCube) time
correlated picoseconds single photon counting (TCSPC) system.
Solutions were excited with a pulsed diode laser (<100 ps pulse
duration) at a wavelength of 375 nm (NanoLED-11) with a repetition
rate of 1 MHz. The detection system consisted of a microchannel plate
photomultiplier (5000U-09B, Hamamatsu) with a 38.6 ps response
time coupled to a monochromator (5000 M) and TCSPC electronics
[data station hub including Hub-NL, NanoLED controller, and
preinstalled Fluorescence Measurement and Analysis Studio (FMAS)
Software]. The fluorescence lifetime values were obtained using DAS6
decay analysis software. For SEM measurements, samples were drop
cast and air-dried on flat surface of mica sheet and subjected to thin
gold coating using JEOL JFC-1200 fine coater. The probe was inserted
into JEOL JSM-5600 LV scanning electron microscope for taking
photographs. TEM measurements were carried out in JEOL 100 kV
HRTEM. The samples were prepared by drop casting 25 μL of 2 ×
10−5 M onto a carbon-coated copper grid, and solvent was allowed to
evaporate under vacuum. AFM images were recorded under ambient
conditions using NTEGRA Prima-NT-MDT, Russia, scanning probe
microscope operated in tapping mode. Microfabricated silicone
cantilever tips (NSG 20) with a resonance frequency of 260−630
kHz and a force constant of 20−80 N m1− were used. The tip
curvature radius was 10 nm. The scan rate was 1 Hz. The AFM
samples were prepared by drop casting 2 × 10−5 M solution onto a
mica sheet, and solvent was allowed to evaporate under vacuum.
Liquid crystalline phase transitions and optical anisotropy were
observed using a Leica DFC 490 polarized light optical microscope,
equipped with a Mettler Toledo FP82HT (temperature programmer)
heating and freezing stage. Differential scanning calorimetric experi-
ments were performed using a Perkin-Elmer Pyris 6 DSC instrument
in sealed aluminum pans under nitrogen flow, at a heat/cooling rate of
5 °C/min. The rheological investigations were carried out in Physica
Modular Compact (MCR 150) stress controlled rheometer from
Anton Paar with a cone-and-plate geometry (CP 50-1). XRD studies
of xerogel were carried out on samples coated in glass slide, and
temperature-dependent XRD studies at liquid crystalline phases were
carried out on samples filled in Lindemann capillaries and were held at
required temperatures using a Mettler hot stage and irradiated with
CuKα radiation (λ = 1.5418 Å). The apparatus essentially involved a
high-resolution X-ray powder diffractometer (PANalytical X’Pert
PRO) equipped with a high-resolution fast detector, PIXCEL.
ACKNOWLEDGMENTS
■
Dedicated to Professor C. N. R. Rao on the occasion of his 80th
birthday. This work is supported by Council of Scientific and
Industrial Research (CSIR) under the Project NWP 55. A.P.S.,
D.D.P., S.V., N.S.S.K., are grateful to CSIR for fellowships. This
is contribution no. NIIST-PPG-349. The authors thank Dr. J.
D. Sudha for the rheological studies and Dr. C. N.
Ramachandran, Assistant Professor, IIT Roorkee for theoretical
calculations.
REFERENCES
■
(1) (a) Lehn, J.-M. Proc. Natl Acad. Sci. U.S.A. 2002, 99, 4763.
(b) Meazza, L.; Foster, J.; Fucke, K.; Metrangolo, P.; Resnati, G.;
Steed, J. Nat. Chem. 2013, 5, 42. (c) Whitesides, G.; Boncheva, M.
Proc. Natl Acad. Sci. U.S.A. 2002, 99, 4769. (d) Whitesides, G.;
Grzybowski, B. Science 2002, 295, 2418.
(2) (a) Camerel, F.; Bonardi, L.; Schmutz, M.; Ziessel, R. J. Am.
Chem. Soc. 2006, 128, 4548. (b) Diring, S.; Camerel, F.; Donnio, B.;
Dintzer, T.; Toffanin, S.; Capelli, R.; Muccini, M.; Ziessel, R. J. Am.
Chem. Soc. 2009, 131, 18177. (c) Faramarzi, V.; Niess, F.; Moulin, E.;
Maaloum, M.; Dayen, J.-F.; Beaufrand, J.-B.; Zanettini, S.; Doudin, B.;
Giuseppone, N. Nat. Chem. 2012, 4, 485. (d) Huang, Z.; Lee, H.; Lee,
E.; Kang, S.-K.; Nam, J.-M.; Lee, M. Nat. Commun. 2011, 2, 459.
(e) Kato, T.; Mizoshita, N.; Kishimoto, K. Angew. Chem., Int. Ed. 2005,
45, 38. (f) Pisula, W.; Feng, X.; Mullen, K. Adv. Mater. 2010, 22, 3634.
(g) Ziessel, R.; Pickaert, G.; Camerel, F.; Donnio, B.; Guillon, D.;
̈
́
Cesario, M.; Prange, T. J. Am. Chem. Soc. 2004, 126, 12403. (h) Keizer,
H. M.; Sijbesma, R. P. Chem. Soc. Rev. 2005, 34, 226. (i) Hashimoto,
M.; Ujiie, S.; Mori, A. Adv. Mater. 2003, 15, 797. (j) Seo, S.; Park, J.;
Chang, J. Langmuir 2009, 25, 8439.
(3) (a) Babu, S.; Prasanthkumar, S.; Ajayaghosh, A. Angew. Chem., Int.
Ed. 2012, 51, 1766. (b) Hirst, A.; Escuder, B.; Miravet, J.; Smith, D.
Angew. Chem., Int. Ed. 2008, 47, 8002. (c) Lara, A.; Lia, A.; Steve, W.;
Andrew, D. Org. Biomol. Chem. 2004, 2, 137. (d) Lee, K.; Kang, M.;
Zhang, S.; Gu, Y.; Lodge, T.; Frisbie, C. Adv. Mater. 2012, 24, 4457.
(e) van Bommel, K.; Stuart, M.; Feringa, B.; van Esch, J. Org. Biomol.
Chem. 2005, 3, 2917. (f) Yoshiyuki, O.; Kazuaki, N.; Masahito, S.;
Junichi, H.; Seiji, S. J. Mater. Chem. 2001, 11, 2412.
(4) (a) Abu Bin, I.; Takahiro, S.; Yukikazu, T. Polym. J. 2010, 42, 839.
(b) Harada, A.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.;
Yamaguchi, H. Nat. Chem. 2011, 3, 34. (c) Yamamoto, T.; Yoshida, M.
Langmuir 2012, 28, 8463. (d) Yuichiro, K.; Yoshinori, T.; Akihito, H.;
Hiroyasu, Y.; Akira, H. Sci. Rep. 2013, 3. (e) Zhang, M.; Xu, D.; Yan,
X.; Chen, J.; Dong, S.; Zheng, B.; Huang, F. Angew. Chem., Int. Ed.
2012, 51, 7011.
(5) (a) Steed, J. W. Chem. Commun. 2011, 47, 1379. (b) Buerkle, L.
E.; Rowan, S. J. Chem. Soc. Rev. 2012, 41, 6089.
(6) Shinto, V.; Nambalan, S. S. K.; Anjali, K.; Doddamane, S. S. R.;
Subbarao Krishna, P.; Suresh, D. Adv. Funct. Mater. 2009, 19, 2064.
(7) Lutfor, M.; Yusoff, M.; Tschierske, C.; Pelz, K.; Baumeister, U.;
Silong, S. electronic-Liquid Crystal Communications 2005, 28, 1.
(8) (a) Jing, L.; Panli, H.; Junlin, Y.; Xiaohua, F.; Junxia, P.; Kaiqiang,
L.; Yu, F. Adv. Mater. 2008, 20, 2508. (b) Yoshida, R. Adv. Mater.
2010, 22, 3463. (c) Murata, K.; Aoki, M.; Nishi, T.; Ikeda, A.; Shinkai,
S. J. Chem. Soc., Chem. Commun. 1991, 1715.
(9) (a) De, M.; van, J.; Stokroos, I.; Kellogg, R. M.; Feringa, B. L. J.
Am. Chem. Soc. 1997, 119, 12675. (b) Koevoets, R.; Versteegen, R.;
Kooijman, H.; Spek, A.; Sijbesma, R.; Meijer, E. J. Am. Chem. Soc.
2005, 127, 2999.
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthesis, mesomorphic properties, optimized structures of
OXD derivatives in bow and fully extended direction,
photophysical properties, temperature-dependent XRD data
in the mesophases of OXD derivatives, XRD data in xerogel
state, CGCs of OXD derivatives in various organic media, and
morphological investigation. This information is available free
(10) (a) Suman, S.; Kumar, B. Chem. Mater. 2012, 24, 1165.
(b) Wang, Q.; Mynar, J.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.;
Kinbara, K.; Aida, T. Nature 2010, 463, 339.
(11) Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. Adv.
Mater. 2002, 14, 198.
(12) (a) Mahler, A.; Reches, M.; Rechter, M.; Cohen, S.; Gazit, E.
Adv. Mater. 2006, 18, 1365. (b) O’Leary, L.; Fallas, J.; Bakota, E.;
Kang, M.; Hartgerink, J. Nat. Chem. 2011, 3, 821.
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
5422
dx.doi.org/10.1021/ja500607d | J. Am. Chem. Soc. 2014, 136, 5416−5423