Journal of the American Chemical Society
Communication
transmetalation with AgF in these cases. Unprotected amino/hydroxyl
groups are also not tolerated.
(15) Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 12150.
(16) Preliminary unpublished results suggest that 3 containing 4-n-
butylphenyl gives the highest yield compared with ligands modified with
other aryl groups.
(17) Similar to 2, precatalyst 22 is insoluble in most organic solvents.
Therefore, spectroscopic characterization was not possible. However, it
readily forms the oxidative addition complex 21 and 1,5-COD upon
exposure to 1-bromo-4-n-butylbenzene. See the Supporting Information
for details.
(18) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Chem. Sci. 2013, 4,
916.
(19) (a) Hoshiya, N.; Buchwald, S. L. Adv. Synth. Catal. 2012, 354,
2031. (b) Fors, B. P.; Dooleweerdt, K.; Zeng, Q.; Buchwald, S. L.
Tetrahedron 2009, 65, 6576.
(20) Related fluoride effects have been documented. See: (a) Su, W.;
Raders, S.; Verkade, J. G.; Liao, X.; Hartwig, J. F. Angew. Chem., Int. Ed.
2006, 45, 5852. (b) Pan, J.; Wang, X.; Zhang, Y.; Buchwald, S. L. Org.
Lett. 2011, 13, 4974.
(21) It was discovered that 22 is not as effective as 2 for certain non-
heterocyclic substrates. This result suggests that 4-n-butylphenyl may
not be the best modifying group for the fluorination of non-heterocyclic
substrates. The origin of this effect is under investigation in our lab.
However, ligand 3 was chosen for study because of its ease of synthesis
and generality.
Notes
The authors declare the following competing financial
interest(s): MIT has obtained or has filed patents on some of
the ligands/precatalysts that are described in the paper from
which S.L.B. and former/current coworkers receive royalty
payments.
ACKNOWLEDGMENTS
■
Research reported in this publication was supported by the
National Institutes of Health under Award GM46059. This
content is solely the responsibility of the authors and does not
necessarily reflect the views of the National Institutes of Health.
P.J.M. thanks the National Science Foundation for a predoctoral
fellowship (2010094243). We also thank Amgen for an
educational donation. The X-ray diffractometer was purchased
with the help of funding from the National Science Foundation
(CHE 0946721). Dr. Peter Muller (MIT) is acknowledged for
̈
solving the X-ray structure of 3. We also thank Dr. Aaron Sather
and Mr. Nicholas Bruno (MIT) for assistance with the
preparation of the manuscript and GC analysis, respectively.
REFERENCES
■
(1) For reviews, see: (a) Purser, S.; Moore, P. R.; Swallow, S.;
Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (b) Kirk, K. L. Org. Process
(22) Winblad, B.; Fioravanti, M.; Dolezal, T.; Logina, I.; Milanov, I. G.;
Popescu, D. C.; Solomon, A. Clin. Drug Invest. 2008, 28, 533.
Res. Dev. 2008, 12, 305. (c) Muller, K.; Faeh, C.; Diederich, F. O. Science
2007, 317, 1881.
̈
(2) For reviews, see: (a) Tredwell, M.; Gouverneur, V. Angew. Chem.,
Int. Ed. 2012, 51, 11426. (b) Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A.
D. Angew. Chem., Int. Ed. 2008, 47, 8998. For recent examples, see:
(c) Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 17456.
(d) Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.; Boursalian,
G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T. Science 2011, 334,
639.
(3) For a review, see: (a) Liang, T.; Neumann, C. N.; Ritter, T. Angew.
Chem., Int. Ed. 2013, 52, 8214. Also see: (b) Mu, X.; Zhang, H.; Chen,
P.; Liu, G. Chem. Sci. 2014, 5, 275. (c) Fier, P. S.; Hartwig, J. F. Science
2013, 342, 956. (d) Ye, Y.; Schimler, S. D.; Hanley, P. S.; Sanford, M. S. J.
Am. Chem. Soc. 2013, 135, 16292. (e) Ichiishi, N.; Canty, A. J.; Yates, B.
F.; Sanford, M. S. Org. Lett. 2013, 15, 5134. (f) Mazzotti, A. R.;
Campbell, M. G.; Tang, P.; Murphy, J. M.; Ritter, T. J. Am. Chem. Soc.
2013, 135, 14012. (g) Truong, T.; Klimovica, K.; Daugulis, O. J. Am.
Chem. Soc. 2013, 135, 9342. (h) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc.
2013, 135, 4648. (i) Fier, P. S.; Luo, J.; Hartwig, J. F. J. Am. Chem. Soc.
2013, 135, 2552.
(4) (a) Hollingworth, C.; Gouverneur, V. Chem. Commun. 2012, 48,
2929. (b) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.
(5) Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; García-Fortanet,
J.; Kinzel, T.; Buchwald, S. L. Science 2009, 325, 1661.
(6) Lee, H. G.; Milner, P. J.; Buchwald, S. L. Org. Lett. 2013, 15, 5602.
(7) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 10795.
(8) Aryl iodides are also viable substrates for this reaction. However, we
focused on aryl bromides since they are more widely available.
(9) The starting materials corresponding to 4 and 5 were contaminated
with 0.85% and 0.3% Ar−H, respectively. See the Supporting
Information for details.
(10) Maimone, T. J.; Milner, P. J.; Kinzel, T.; Zhang, Y.; Takase, M. K.;
Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 18106.
(11) Milner, P. J.; Maimone, T. J.; Su, M.; Chen, J.; Muller, P.;
̈
Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 19922.
(12) Other sources of Pd were also evaluated; we found that precatalyst
2 is the most effective Pd source. See the Supporting Information for
details.
(13) The optimal loading of KF was found to be 0.5 equiv. See the
Supporting Information for details.
(14) To date, this reaction is not effective for unactivated aryl chlorides
and substrates with bulky ortho substituents, likely because of slower
3795
dx.doi.org/10.1021/ja5009739 | J. Am. Chem. Soc. 2014, 136, 3792−3795