ChemComm
Communication
occur, but rather ꢀNO reductive coupling takes place (eqn (4)). Notes and references
This reaction is rare in copper nitrogen-oxide (bio)chemistry.13
1 (a) P. Pacher, J. S. Beckman and L. Liaudet, Physiol. Rev., 2007, 87, 315;
(b) J. S. Beckman and W. H. Koppenol, Am. J. Physiol., 1996, 271, C1424.
2 T. Nauser and W. H. Koppenol, J. Phys. Chem. A, 2002, 106, 4084.
3 (a) J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall and B. A.
Freeman, Proc. Natl. Acad. Sci. U. S. A., 1990, 87, 1620; (b) S. Pfeiffer,
A. C. F. Gorren, K. Schmidt, E. Werner, B. Hansert, D. S. Bohle and
B. Mayer, J. Biol. Chem., 1997, 272, 3465; (c) J. W. Coddington, J. K. Hurst
and S. V. Lymar, J. Am. Chem. Soc., 1999, 121, 2438; (d) S. Goldstein, J. Lind
and G. Merenyi, Chem. Rev., 2005, 105, 2457; (e) R. Roncone, M. Barbieri,
E. Monzani and L. Casella, Coord. Chem. Rev., 2006, 250, 1286;
( f ) C. Szabo, H. Ischiropoulos and R. Radi, Nat. Rev. Drug Discovery,
2007, 6, 662; (g) G. Ferrer-Sueta and R. Radi, ACS Chem. Biol., 2009, 4, 161;
(h) H. Gunaydin and K. N. Houk, Chem. Res. Toxicol., 2009, 22, 894;
(i) M. P. Schopfer, J. Wang and K. D. Karlin, Inorg. Chem., 2010, 49, 6267;
( j) L. Qiao, Y. Lu, B. Liu and H. H. Girault, J. Am. Chem. Soc., 2011,
133, 19823; (k) J. C. Toledo and O. Augusto, Chem. Res. Toxicol., 2012,
25, 975; (l) R. Radi, Acc. Chem. Res., 2012, 46, 550.
2CuI + 2H+ + 2ꢀNO - 2CuII + H2O + N2O
(4)
We further proved that this chemistry occurs by demonstrat-
ing that a Cu(I) derivative of the BA ligand, [(BA)CuI]+, reacts
ꢀ
with NO(g) in the presence of 1 equiv. HClO4 to give the Cu(II)
complex 1 and N2O(g). However, in the absence of the proton
source only a nitrite complex [(BA)CuII(NO2)]+ is generated i.e.,
the classic disproportionation reaction (eqn (3)) (see ESI†).
Notably, the same detoxifying reductive coupling reaction
giving N2O(g) and water occurs at a heme–non-heme diiron active
site in bacterial ꢀNO Reductases (NOR’s), for flavo-non-heme
diiron enzymes and for fungal P-450nor enzymes.14
Thus, the newly discovered chemistry involving copper complex
NOR activity in the presence of acid (eqn (4)) explains the finding
mentioned above that Cu(II) and not Cu(I) is observed as the final
product in the reactions described herein. Thus, the overall
chemistry that occurs in the [(BA)CuII(OOH)]+ (2) + ꢀNO(g) reaction
is described by eqn (5); two processes take place, the generation of
peroxynitrite via CuII(OOH) + NO(g), and the Cu(I) therein produced
effects NOR chemistry with the excess nitric oxide.
4 (a) M. N. Hughes, H. G. Nicklin and W. A. C. Sackrule, J. Chem. Soc. A,
1971, 3722; (b) O. A. Babich and E. S. Gould, Res. Chem. Intermed., 2002,
28, 575; (c) P. C. Ford and I. M. Lorkovic, Chem. Rev., 2002, 102, 993;
(d) S. Herold and W. H. Koppenol, Coord. Chem. Rev., 2005, 249, 499;
(e) F. Roncaroli, M. Videla, L. D. Slep and J. A. Olabe, Coord. Chem. Rev.,
2007, 251, 1903; ( f ) D. Maiti, D.-H. Lee, A. A. Narducci Sarjeant,
M. Y. M. Pau, E. I. Solomon, K. Gaoutchenova, J. Sundermeyer and K. D.
Karlin, J. Am. Chem. Soc., 2008, 130, 6700; (g) G. Y. Park, S. Deepalatha,
S. C. Puiu, D.-H. Lee, B. Mondal, A. A. Narducci Sarjeant, D. del Rio,
M. Y. M. Pau, E. I. Solomon and K. D. Karlin, JBIC, J. Biol. Inorg. Chem.,
2009, 14, 1301; (h) M. P. Schopfer, B. Mondal, D.-H. Lee, A. A. N. Sarjeant
and K. D. Karlin, J. Am. Chem. Soc., 2009, 131, 11304; (i) T. S. Kurtikyan
and P. C. Ford, Chem. Commun., 2010, 46, 8570; ( j) T. S. Kurtikyan,
S. R. Eksuzyan, V. A. Hayrapetyan, G. G. Martirosyan, G. S. Hovhannisyan
and J. A. Goodwin, J. Am. Chem. Soc., 2012, 134, 13861; (k) A. Yokoyama,
K.-B. Cho, K. D. Karlin and W. Nam, J. Am. Chem. Soc., 2013, 135, 14900.
5 S. Herold, M. Exner and T. Nauser, Biochemistry, 2001, 40, 3385.
6 (a) C. Quijano, D. Hernandez-Saavedra, L. Castro, J. M. McCord, B. A.
Freeman and R. Radi, J. Biol. Chem., 2001, 276, 11631; (b) P. Quint,
R. Reutzel, R. Mikulski, R. McKenna and D. N. Silverman, Free Radical
Biol. Med., 2006, 40, 453; (c) N. B. Surmeli, N. K. Litterman, A.-F. Miller
and J. T. Groves, J. Am. Chem. Soc., 2010, 132, 17174.
7 (a) M. Kirsch and H. de Groot, J. Biol. Chem., 2002, 277, 13379;
(b) S. I. Liochev and I. Fridovich, Arch. Biochem. Biophys., 2002, 402,
166; (c) A. G. Estevez, J. P. Crow, J. B. Sampson, C. Reiter, Y. Zhuang,
G. J. Richardson, M. M. Tarpey, L. Barbeito and J. S. Beckman,
Science, 1999, 286, 2498.
8 S. Kim, C. Saracini, M. A. Siegler, N. Drichko and K. D. Karlin, Inorg.
Chem., 2012, 51, 12603.
9 A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor,
J. Chem. Soc., Dalton Trans., 1984, 1349.
10 T. Tano, M. Z. Ertem, S. Yamaguchi, A. Kunishita, H. Sugimoto, N. Fujieda,
T. Ogura, C. J. Cramer and S. Itoh, Dalton Trans., 2011, 40, 1477.
11 A. Kalita, P. Kumar and B. Mondal, Chem. Commun., 2012, 48,
4636.
2[CuII–OOH]+ + 4ꢀNO(g) - 2CuII–NO3 + H2O + N2O(g)
(5)
À
To summarize, the importance of peroxynitrite chemistry in
biological systems, in terms of PN as a destructive oxidant or
nitrating agent, calls for further investigation of relevant metal
ion (M) chemistry. What reactivity promotes PN formation and/or
reactivity and/or its own destruction, the latter in terms of health
related metal-based PN decomposition catalysis?15 PN or PN asso-
À
ꢀ
ciated chemistry can occur from M–O2 + NO(g), M–NO2 + H2O2,
M–NO + O2, or M–NO + H2O2 chemistry. Here, we have described a
II
ꢀ
new reaction of a discrete Cu –hydroperoxo complex with NO(g).
Evidence strongly supporting the intermediacy of a Cu–PN complex
includes the finding the (i) nitrate ion forms in high yield and (ii) if a
phenol as substrate is added, efficient nitration occurs. We also
document a rare case of Cu mediated ꢀNO(g) reductive coupling, not
unlike what occurs for NOR’s. The nature of intermediates formed
and mechanism of that reaction remain to be elucidated.
We believe that the specific reaction type studied here,
[M–OOH]+ + ꢀNO(g), is relevant to biological chemistry. How is it
that phenol tyrosine nitration occurs at a position close to the active
site inside Mn–superoxide dismutase (MnSOD)?6b,c In vitro exposure
of the protein to an excess of PN effects the indicated reaction.6c Is it
not more likely that in the natural environment, a Mn–OOH
intermediate, that known to form in the enzyme reaction, reacts
12 (a) D.-H. Lee, B. Mondal and K. D. Karlin, in Activation of Small Molecules:
Organometallic and Bioinorganic Perspectives, ed. W. B. Tolman, Wiley-
¨
VCH, New York, 2006, pp. 43–79; (b) I. M. Wasser, S. de Vries, P. Moenne-
¨
Loccoz, I. Schroder and K. D. Karlin, Chem. Rev., 2002, 102, 1201.
13 (a) P. P. Paul and K. D. Karlin, J. Am. Chem. Soc., 1991, 113, 6331;
(b) S. Ghosh, A. Dey, O. M. Usov, Y. Sun, V. M. Grigoryants,
C. P. Scholes and E. I. Solomon, J. Am. Chem. Soc., 2007, 129, 10310.
14 N. Lehnert, T. C. Berto, M. G. I. Galinato and L. E. Goodrich, in The
Handbook of Porphyrin Science, ed. K. M. Kadish, K. Smith and
R. Guilard, World Scientific, Singapore, 2011, pp. 1–247.
15 (a) J. T. Groves and S. S. Marla, J. Am. Chem. Soc., 1995, 117, 9578;
(b) M. K. Stern, M. P. Jensen and K. Kramer, J. Am. Chem. Soc., 1996,
118, 8735; (c) R. Shimanovich, S. Hannah, V. Lynch, N. Gerasimchuk,
T. D. Mody, D. Magda, J. Sessler and J. T. Groves, J. Am. Chem. Soc., 2001,
123, 3613; (d) I. Schepetkin, A. Potapov, A. Khlebnikov, E. Korotkova,
A. Lukina, G. Malovichko, L. Kirpotina and M. T. Quinn, JBIC, J. Biol.
Inorg. Chem., 2006, 11, 499; (e) A. Mahammed and Z. Gross, Angew.
Chem., Int. Ed., 2006, 45, 6544.
ꢀ
with endogenous NO(g), and as described here, leads to tyrosine
nitration? CuZnSOD is also known to promote Tyr nitration7c,16 and
based on the chemistry presented herein, we suggest that a protein
CuII–hydroperoxo intermediate may react with ꢀNO(g) leading to PN
mediated chemistry. (Note, for either MnSOD or CuZnSOD, a
M–superoxo enzyme intermediate could react with ꢀNO(g) to give
PN.) Further consideration of metal ion mediated PN generation
and reactivity, like that outlined in Scheme 1, is required.
We are grateful to the USA National Institutes of Health
(GM-28962) for support of this research.
16 H. Ischiropoulos, L. Zhu, J. Chen, M. Tsai, J. C. Martin, C. D. Smith
and J. S. Beckman, Arch. Biochem. Biophys., 1992, 298, 431.
2846 | Chem. Commun., 2014, 50, 2844--2846
This journal is ©The Royal Society of Chemistry 2014