6
HASSAN ET AL.
absolute configurations of monoamines. J Am Chem Soc. 2014;
136(2):550-553.
39. Joyce LA, Sherer EC, Welch CJ. Imine-based chiroptical sens-
ing for analysis of chiral amines: from method design to syn-
thetic application. Chem Sci. 2014;5:2855-2861.
40. Wezenberg SJ, Salassa G, Escudero-Adan EC, Benet-
Buchholz J, Kleij A. Effective chirogenensis in a bis (meta-
llosalphen) complex through host-guest binding with carbox-
ylic acids. Angew Chem Int Ed. 2011;50(3):713-716.
41. Seo M, Sun D, Kim H. Stereoselective chiral recognition of
amino alcohols with 2,20-dihydroxybenzil. J Org Chem. 2017;
82(13):6586-6591.
42. Bentley KW, Joyce LA, Sherer EC, Sheng H, Wolf C, Welch CJ.
Antenna biphenols: development of extended wavelength
chiroptical reporters. J Org Chem. 2016;81(3):1185-1191.
43. de los Santos ZA, Joyce LA, Sherer EC, Welch CJ, Wolf C. Opti-
22. Zhang J, Holmes AE, Sharma A, et al. Derivatization, complex-
ation and absolute configurational assignment of chiral pri-
mary amines: application of exciton-coupled circular
dichroism. Chirality. 2003;15(2):180-189.
23. Holmes AE, Das D, Canary JW. Chelation-enhanced circular
dichroism of tripodal bisporphyrin ligands. J Am Chem Soc.
2007;129:1157-1506.
24. You L, Berman JS, Anslyn EV. Dynamic multi-component
covalent assembly for the reversible binding of secondary alco-
hols and chirality sensing. Nat Chem. 2011;3(12):943-948.
25. Joyce LA, Maynor MS, Dragna JM, et al. A simple method for
the determination of enantiomeric excess and identity of chiral
carboxylic acids. J Am Chem Soc. 2012;134:7126-7134.
26. You L, Pescitelli G, Anslyn EV, Di Bari L. An exciton-coupled
circular dichroism protocol for the determination of identity,
chirality, and enantiomeric excess of chiral secondary alcohols.
J Am Chem Soc. 2012;134(16):7117-7125.
cal chirality sensing with
a stereodynamic aluminum
biphenolate probe. J Org Chem. 2019;84(8):4639-4645.
44. Sciebura J, Skowronek P, Gawronski J. Trityl ethers: molecular
bevel gears reporting chirality through circular dichroism spec-
tra. Angew Chem Int Ed. 2009;48(38):7069-7072.
27. Ni C, Zha D, Ye H, et al. Dynamic covalent chemistry within
biphenyl scaffolds: reversible covalent bonding, control of
selectivity, and chirality sensing with a single system. Angew
Chem Int Ed. 2018;57:1300-1305.
45. Sciebura J, Gawronski J. Double chirality transmission in trityl
amines: sensing molecular dynamic stereochemistry by circular
dichroism and DFT calculations. Chem A Eur J. 2011;17(47):
13138-13141.
28. Bentley K, Wolf C. Stereodynamic chemosensor with selective
circular dichroism and fluorescence readout for in situ determi-
nation of absolute configuration, enantiomeric excess, and con-
centration of chiral compounds. J Am Chem Soc. 2013;135(33):
12200-12203.
29. de los Santos ZA, Wolf C. Chirality sensing with stereodynamic
copper(I) complexes. Chirality. 2017;29(11):663-669.
30. Pilicer SL, Bakhshi PR, Bentley KW, Wolf C. Biomimetic chi-
rality sensing with pyridoxal-50-phosphate. J Am Chem Soc.
2017;139(5):1758-1761.
31. Zhang P, Wolf C. Sensing of the concentration and enantio-
meric excess of chiral compounds with tropos ligand derived
metal complexes. Chem Commun. 2013;49(62):7010-7012.
32. Bentley K, Nam YG, Murphy JM, Wolf C. Chirality sensing of
amines, diamines, amino acids, amino alcohols, and α-hydroxy
acids with a single probe. J Am Chem Soc. 2013;135(48):18052-
18055.
46. Thanzeel FY, Wolf C. Substrate-specific amino acid sensing
using a molecular D/L-cysteine probe for comprehensive ste-
reochemical analysis in aqueous solution. Angew Chem Int Ed.
2017;56(25):7276-7281.
47. Superchi S, Casarini D, Laurita A, Bavoso A, Rosini C. Induc-
tion of a preferred twist in a biphenyl core by stereogenic cen-
ters: a novel approach to the absolute configuration of 1,2- and
1,3-diols. Angew Chem Int Ed. 2001;40(2):451-454.
48. Superchi S, Bisaccia R, Casarini D, Laurita A, Rosini C. Flexi-
ble biphenyl chromophore as a circular dichroism probe for
assignment of the absolute configuration of carboxyclic acids.
J Am Chem Soc. 2006;128:5893-6902.
49. Mazaleyrat J, Wright K, Gaucher A, et al. Induced axial chiral-
ity in the biphenyl core of the Cα-tetrasubstituted α-amino acid
residue Bip and subsequent propagation of chirality in (Bip)
n/Val oligopeptides. J Am Chem Soc. 2004;126(40):12874-
12879.
33. Irfanoglu B, Wolf C. Circular dichroism sensing of chiral com-
pounds using an achiral metal complex as probe. Chirality.
2014;26(8):379-384.
34. Bentley W, de los Santos ZA, Weiss MJ, Wolf C. Chirality sens-
ing with stereodynamic biphenolate zinc complexes. Chirality.
2015;27(10):700-707.
35. Bentley K, Zhang P, Wolf C. Miniature high-throughput
chemosensing of yield, ee, and absolute configuration from
crude reaction mixtures. Sci Adv. 2016;2(2):e1501162.
36. de los Santos ZA, Wolf C. Chiroptical asymmetric reaction
screening via multicomponent self-assembly. J Am Chem Soc.
2016;138(41):13517-13520.
50. Dutot L, Wright K, Gaucher A, et al. The Bip method, based on
the induced circular dichroism of a flexible biphenyl probe in
terminally protected-Bip-Xaa*-dipepetides, for assignment of
the absolute configuration of β-amino acids. J Am Chem Soc.
2008;130(18):5986-5992.
51. Thanzeel FY, Balaraman K, Wolf C. Click chemistry enables
quantitative chiroptical sensing of chiral compounds in protic
media and complex mixtures. Nat Commun. 2018;9(1):5323.
52. Thanzeel FY, Sripada A, Wolf C. Quantitative chiroptical sens-
ing of free amino acids, biothiols, amines and amino alcohols
with an aryl fluoride probe. J Am Chem Soc. 2019;141:116387-
163182.
37. de los Santos ZA, Lynch CC, Wolf C. Optical Chirality Sensing
with an Auxiliary-Free Earth-Abundant Cobalt Probe. Angew
Chem Int Ed. 2019;58:1198-1202.
53. Pilicer SL, Mancinelli M, Mazzanti A, Wolf C. Predictive chiral-
ity sensing via Schiff base formation. Org Biomol Chem. 2019;
17(27):6699-6705.
38. de los Santos ZA, Yusin G, Wolf C. Enantioselective Sensing of
Carboxylic Acids with a Bis (urea)oligo (phenylene)ethynylene
Foldamer. Tetrahedron. 2019;75:1504-1509.
54. Badetti E, Wurst K, Licini G, Zonta C. Multimetallic architec-
tures from the self-assembly of amino acids and tri-
s(2-pyridylmethyl)amine zinc (II) complexes: circular