Organic Letters
Letter
Although other approaches have been reported,29 pyrazines
are commonly prepared from α-aminoaldehydes.30 We
envisioned a preparation of pyrazines starting from nitro-
epoxides using dry ammonia in methanol. Ammonia would
attack the nitroepoxide to give an α-amino ketone which could
dimerize to afford a dihydropyrazine intermediate which upon
oxidation could afford pyrazine (Scheme 3). When nitro-
ACKNOWLEDGMENTS
■
This work was financed by the Bancaixa−UJI foundation (P1
1B2011-59 and P1 1B2011-28). A.V.-A. thanks Generalitat
Valenciana for a Ph.D. research grant under the VALi+D
Program. We also thank Serveis Centrals d’Instrumentacio
́
́
Cientifica from Universitat Jaume I for technical support.
REFERENCES
■
Scheme 3. Synthesis of Pyrazines
(1) (a) Hazeldine, S. T.; Polin, L.; Kushner, J.; Paluch, J.; White, K.;
Edelstein, M.; Palomino, E.; Corbett, T. H.; Horwitz, J. P. J. Med.
Chem. 2001, 44, 1758−1776. (b) Kong, D.; Park, E. J.; Stephen, A. G.;
Calvani, M.; Cardellina, J. H.; Monks, A.; Fisher, R. J.; Shoemaker, R.
H.; Melillo, G. Cancer Res. 2005, 65, 9047−9055.
(2) (a) El-Ashry, E. S. H.; Abdel-Rahman, A. A. H.; Rashed, N.;
Rasheed, H. A. Pharmazie 1999, 54, 893−897. (b) You, L.; Cho, E. J.;
Leavitt, J.; Mad, L.; Montelione, G. T.; Anslyn, E. V.; Krug, R. M.;
Ellington, A.; Robertus, J. D. Bioorg. Med. Chem. Lett. 2011, 21, 3007−
3011.
(3) Badran, M. M.; Abonzid, K. A.; Hussein, M. H. Arch. Pharm. Res.
2003, 26, 107−113. Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med.
Chem. 2002, 45, 5604−5606.
(4) Abu-Hashem, A. A.; Gouda, M. A.; Badria, F. A. Eur. J. Med.
Chem. 2010, 45, 1976−1981.
(5) (a) Khattab, S. N.; Hassan, S. Y.; Bekhit, A. A.; El Massry, A. M.;
Langer, V. Eur. J. Med. Chem. 2010, 45, 4479−4489. (b) Srinivas, C.;
Kumar, C. N. S. S. P.; Rao, V. J.; Palaniappan, S. J. Mol. Catal. A: Chem.
2007, 26, 227−230.
(6) (a) Myers, M. R.; He, W.; Hanney, B.; Setzer, N.; Maguire, M. P.;
Zulli, A.; Bilder, G.; Galzciniski, H.; Amin, D.; Needle, S.; Spada, A. P.
Bioorg. Med. Chem. Lett. 2003, 13, 3091−3095. (b) Dietrich, B.;
Diederchsen, U. Eur. J. Org. Chem. 2005, 40, 147−153.
(7) Li, H.; T. Koh, T. M.; Hagfeldt, A.; Gratzel, M.; Mhaisalkar, S. G.;
Grimsdale, A. C. Chem. Commun. 2013, 49, 2409−2411.
(8) (a) Mondal, R.; Ko, S.; Bao, Z. J. Mater. Chem. 2010, 20, 10568−
epoxides 1a−e were treated with a solution of ammonia in
methanol31 in the open air pyrazines 5a−e were obtained as the
single compound of the reaction32 in high yield (eq 5, Scheme
3).
10576. (b) Wriedt, M.; Jess, I.; Nather, C. Eur. J. Inorg. Chem. 2009,
̈
363−372. (c) Liu, H.-Y.; Wu, H.; Ma, J.-F.; Yang, J.; Liu, Y.-Y. Dalton
Trans. 2009, 38, 7957−7961.
(9) (a) Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2002,
45, 5604−5606. (b) Niculescu-Duvaz, I.; Roman, E.; Whittaker, S. R.;
Friedlos, F.; Kirk, R.; Scanlon, I. J.; Davies, L. C.; Niculescu-Duvaz, D.;
Marais, R.; Springer, C. J. J. Med. Chem. 2008, 51, 3261−3274.
(c) Cheng, X.- C.; Liu, X.-Y.; Xu, W.-F.; Guo, X.-L.; Zhang, N.; Song,
Y.-N. Bioorg. Med. Chem. 2009, 17, 3018−3024. (d) Zitko, J.; Dolezai,
M.; Svobodova, M.; Vejsova, M.; Kucera, R.; Jilek, P. Bioorg. Med.
Chem. 2011, 19, 1471−1476. (e) Dubuisson, M. L. N.; Rees, J.-F.;
Merchand-Brynaert, J. Mini-Rev. Med. Chem. 2004, 4, 421−435.
(10) (a) Maga, J. A.; Sizer, C. E. J. Agric. Food Chem. 1973, 21, 22−
30. (b) Rohovec, J.; Kotek, J.; Peters, J. A.; Maschmeyer, T. Eur. J. Org.
Chem. 2001, 36, 3899−3901. (c) Lacey, M. J.; Allen, M. S.; Harris, R.
L. N.; Brown, W. V. Am. J. Enol. Viticul. 1991, 42, 103−108. (d) Allen,
M. S.; Lacey, M. J.; Boyd, S. J. J. Agric. Food Chem. 1995, 43, 769−772.
(e) Adams, A.; de Kimpe, N. Food Chem. 2009, 115, 1417−1423.
In summary, we report herein that aromatic heterocycles
such as quinoxalines and pyrazines can be easily prepared by
treating nitroepoxides with 1,2-benzenediamines and ammonia,
respectively. These reactions give very high yields using
environmentally friendly ethanol as a solvent. Piperazines can
also be prepared in a one-pot procedure when nitroepoxides are
treated with 1,2-ethylenediamine and then sodium triacetox-
yborohydride as a reductive agent in ethanol. In addition,
tetrahydroquinoxalines can be easily obtained by using 1,2-
benzenediamine in dichloromethane and then borane−
tetrahydrofuran complex as a reductive agent. Further
investigations of the utility of nitroepoxides in synthesis are
ongoing and will be reported in the future.
(11) Dolezal, M.; Krl’ov, K. Synthesis and Evaluation of Pyrazine
̌
ASSOCIATED CONTENT
Derivatives with Herbicidal Activity In Herbicides, Theory and
Applications; Soloneski, S., Larramendy, M. L., Eds.; InTech: Rijeka,
2011; Chapter 27, pp 581−610.
(12) Bohman, B.; Jeffares, L.; Flematti, G.; Byrne, L. T.; Skelton, B.
W.; Phillips, R. D.; Kingsley, W. D.; Peakall, R.; Barrow, R. A. J. Nat.
Prod. 2012, 75, 1589−1594.
(13) Eary, C. T.; Jones, Z. S.; Groneberg, R. D.; Burgess, L. E.;
Mareska, D. A.; Drew, M. D.; Blake, J. F.; Laird, E. R.; Balachari, D.;
O’Sullivan, M.; Allen, A.; Marsh, V. Bioorg. Med. Chem. Lett. 2007, 17,
2608−2613.
(14) Pouw, B.; Nour, M.; Matsumoto, R. R. Eur. J. Pharmacol. 1999,
386, 181−186.
(15) Matsumoto, Y.; Tsuzuki, R.; Matssuhisa, A.; Yoden, T.;
Yamagiwa, Y.; Yanagisawa, I.; Shibanuma, T.; Nohira, H. Bioorg.
Med. Chem. 2000, 8, 393−404.
■
S
* Supporting Information
Experimental procedures and spectral data for all new
compounds. This material is available free of charge via the
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
1754
dx.doi.org/10.1021/ol500444z | Org. Lett. 2014, 16, 1752−1755