ChemComm
Communication
Table 4 Study on the functional group tolerancea
M. R. L. Furst, C. S. J. Cazin and S. P. Nolan, Angew. Chem., Int. Ed.,
2010, 49, 8674; (d) O. Vechorkin, N. Hirt and X. Hu, Org. Lett., 2010,
12, 3567; (e) H. Mizuno, J. Takaya and N. Iwasawa, J. Am. Chem. Soc.,
2011, 133, 1251.
3 (a) H. Hoberg, Y. Peres and A. Milchereit, J. Organomet. Chem., 1986,
307, C38; (b) H. Hoberg, Y. Peres, C. Kru¨ger and Y. H. Tsay, Angew.
Chem., Int. Ed. Engl., 1987, 26, 771; (c) H. Hoberg, A. Ballesteros,
A. Sigan, C. Jegat and A. Milchereit, Synthesis, 1991, 395;
(d) M. Takimoto and M. Mori, J. Am. Chem. Soc., 2001, 123, 2895;
(e) M. Takemoto and M. Mori, J. Am. Chem. Soc., 2002, 124, 10008;
( f ) M. Takemoto, Y. Nakamura, K. Kimura and M. Mori, J. Am.
Chem. Soc., 2004, 126, 5956; (g) C. M. Williams, J. B. Johnson and
T. Rovis, J. Am. Chem. Soc., 2008, 130, 14936; (h) J. Takaya, K. Sasano
and N. Iwasawa, Org. Lett., 2011, 13, 1698.
Entry
R
Yield of 2b
1
2
3
4
5
p-F
p-Cl
p-CF3
p-COOEt
m-CN
76 (2k)
70 (2l)
61 (2m)
70 (31c) (2n)
50 (2o)
4 (a) M. Takimoto, M. Kawamura and M. Mori, Org. Lett., 2003, 5, 2599;
(b) M. Murakami, N. Ishida and T. Miura, Chem. Lett., 2007, 36, 476;
(c) M. Aoki, S. Izumi, M. Kaneko, K. Ukai, J. Takaya and N. Iwasawa,
Org. Lett., 2007, 9, 1251; (d) M. Takimoto, M. Kawamura, M. Mori and
Y. Sato, Synlett, 2005, 2019; (e) J. Takaya and N. Iwasawa, J. Am. Chem.
Soc., 2008, 130, 15254; ( f ) S. Li, B. Miao, W. Yuan and S. Ma, Org.
Lett., 2013, 15, 977.
6
58 (2p)
a
The reaction was conducted with 1.5 mmol of 1, 1.0 mmol of In
(powder, 425 mesh), 1.5 mmol of CsF under a 2 MPa CO2 atmosphere in
5 mL of anhydrous DMF at 60 1C. Isolated yield. Without CsF.
b
c
5 (a) M. Takimoto, K. Shimizu and M. Mori, Org. Lett., 2001, 3, 3345;
(b) Y. Six, J. Chem. Soc., Perkin Trans. 1, 2002, 1159; (c) Y. Six, Eur.
J. Org. Chem., 2003, 1157; (d) M. Aoki, M. Kaneko, S. Izumi, K. Ukai
and N. Iwasawa, Chem. Commun., 2004, 2568; (e) K. Shimizu,
M. Takimoto, Y. Sato and M. Mori, Org. Lett., 2005, 7, 195;
( f ) K. Shimizu, M. Takimoto, Y. Sato and M. Mori, Synlett, 2006, 3182;
´
(g) L. J. Gooßen, N. Rodrıguez, F. Manjolinho and P. P. Lange, Adv. Synth.
Catal., 2010, 352, 2913; (h) D. Yu and Y. Zhang, Proc. Natl. Acad. Sci.
U. S. A., 2010, 107, 20184; (i) W. Zhang, W. Li, X. Zhang, H. Zhou and
X. Lu, Org. Lett., 2010, 12, 4748; ( j) X. Zhang, W. Zhang, X. Ren, L. Zhang
and X. Lu, Org. Lett., 2011, 13, 2402; (k) T. Fujihara, T. Xu, K. Semba,
J. Terao and Y. Tsuji, Angew. Chem., Int. Ed., 2011, 50, 523; (l) S. Li,
W. Yuan and S. Ma, Angew. Chem., Int. Ed., 2011, 50, 2578; (m) S. Li and
S. Ma, Org. Lett., 2011, 13, 6046; (n) S. Li and S. Ma, Adv. Synth. Catal.,
2012, 354, 2387; (o) S. Li and S. Ma, Chem.–Asian J., 2012, 7, 2411.
Scheme 3 Carboxylation reactions of linear and branched allylic chlorides.
´
6 (a) A. Correa and R. Martın, J. Am. Chem. Soc., 2009, 131, 15974;
(b) T. Fujihara, K. Nogi, T. Xu, J. Terao and Y. Tsuji, J. Am. Chem.
Soc., 2012, 134, 9106; (c) T. Hung and D. Olafs, ACS Catal., 2013,
3, 2417.
In conclusion, we have developed a novel and convenient
way to synthesise b,g-unsaturated carboxylic acid directly from
CO2 and allylic halides. No transition metal catalyst is necessary.
The reaction tolerates many synthetically useful functional groups
such as halogen, CF3, ester, cyano, acetal and the same branched
products were specifically obtained when starting from either
a- or g-substituted allylic halides. The pressure effect and addition
of CsF are responsible for this transformation. Further research
on this type of carboxylation reaction is underway in our group.
Financial support from the National Basic Research Program
of China (2011-CB808700), National Natural Science Foundation
of China (21232006) and Shanghai Municipal Committee of
Science and Technology (12JC1-403700) is greatly appreciated.
We thank Tao Cao in this group for reproducing the results of
entry 4 in Table 3, eqn (4) in Scheme 2 and entry 4 in Table 4.
´
7 T. Leon, A. Correa and R. Martin, J. Am. Chem. Soc., 2013, 135, 1221.
8 (a) R. T. Sanderson, J. Am. Chem. Soc., 1955, 77, 4531; (b) L. E.
Friedrich and R. Cormier, J. Org. Chem., 1971, 36, 3011; (c) G. Courtois
and L. Miginiac, J. Organomet. Chem., 1974, 1.
9 M. Shi and K. M. Nicholas, J. Am. Chem. Soc., 1997, 119, 5057.
10 (a) R. Johansson and O. F. Wendt, Dalton Trans., 2007, 488; (b) M. T.
Johnson, R. Johansson, M. V. Kondrashov, G. Steyl, M. S. G. Ahlquist,
A. Roodt and O. F. Wendt, Organometallics, 2010, 29, 3521.
11 (a) J. Wu, J. C. Green, N. Hazari, D. P. Hruszkewycz, C. D. Incarvito
and T. J. Schmeier, Organometallics, 2010, 29, 6369; (b) D. P.
Hruszkewycz, J. Wu, N. Hazari and C. D. Incarvito, J. Am. Chem.
Soc., 2011, 133, 3280; (c) J. Wu and N. Hazari, Chem. Commun., 2011,
47, 1069; (d) N. Hazari, D. P. Hruszkewycz and J. Wu, Synlett, 2011,
1793; (e) D. P. Hruszkewycz, J. Wu, J. C. Green, N. Hazari and
T. J. Schmeier, Organometallics, 2012, 31, 470.
12 H. A. Duong, P. B. Huleatt, Q. Tan and E. L. Shuying, Org. Lett., 2013,
15, 4034.
13 For reviews on indium metal in organic synthesis, see (a) U. K. Roy
and S. Roy, Chem. Rev., 2010, 110, 2472; (b) Z. Shen, S. Wang, Y. Chok,
Y. Xu and T. Loh, Chem. Rev., 2013, 113, 271.
Notes and references
14 Allylindium sesquihalide is generally considered as the allylindium
species formed in DMF or THF. See, S. Araki, H. Ito and Y. Butsugan,
J. Org. Chem., 1988, 53, 1831. In this study, we have quenched the
following reaction with DOAc, which also indicates the formation of
an allylic indium intermediate.
1 For recent reviews on CO2 activation, see: (a) J. Louie, Curr. Org.
Chem., 2005, 9, 605; (b) T. Sakakura, J.-C. Choi and H. Yasuda,
Chem. Rev., 2007, 107, 2365; (c) M. Aresta and A. Dibenedetto, Dalton
Trans., 2007, 2975; (d) A. Correa and R. Martin, Angew. Chem.,
Int. Ed., 2009, 48, 6201; (e) S. N. Riduan and Y. Zhang, Dalton Trans.,
2010, 39, 3347; ( f ) C. Federsel, R. Jackstell and M. Beller, Angew.
Chem., Int. Ed., 2010, 49, 6254; (g) K. Huang, C. Sun and Z. Shi,
Chem. Soc. Rev., 2011, 40, 2435; (h) M. Cokoja, C. Bruckmeier,
B. Rieger, W. A. Herrmann and F. E. Kuhn, Angew. Chem., Int. Ed.,
2011, 50, 8510; (i) X. Cai and B. Xie, Synthesis, 2013, 3305.
15 D. W. Arnold, S. E. Bradforth, E. H. Kim and D. M. Neumark,
J. Chem. Phys., 1995, 102, 3493. In this report, it is shown by
photoelectron spectrum study that CO2 was activated by FÀ to form
2 (a) I. I. F. Boogaerts and S. P. Nolan, J. Am. Chem. Soc., 2010,
132, 8858; (b) L. Zhang, J. Cheng, T. Ohishi and Z. Hou, Angew.
Chem., Int. Ed., 2010, 49, 8670; (c) I. I. F. Boogaerts, G. C. Fortman,
À
FCO2 species, which may lower the CQO bond energy.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 3285--3287 | 3287