4
Tetrahedron
Tetrahedron Lett. 2002, 43, 8921; (c) Biricik, N.; Durap, F. ;
Kayan, C.; Gumgum, B.; Gurbuz, N.; Ozdemir, I.; Ang, W. H.;
Fei, Z.; Scopelliti, R. J. Organomet. Chem. 2008, 693, 2693; (d)
Molander, G. A.; Canturk, B. Angew. Chem. Int. Ed. 2009, 48,
9240; (e) Milde, B.; Schaarschmidt, D.; Rüffer, T.; Lang, H.
Dalton Trans. 2012, 41, 5377; (f) Das, P.; Bora, U.; Tairai, A.;
Sarmah, C. Tetrahedron Lett. 2010, 51, 1479, (g) Borah, G.;
Table 5: Suzuki-Miyaura cross-coupling reactions of various
aryl chlorides with arylboronic acids in isopropanol
Cl
B(OH)2
K2CO3, i-PrOH, 50oC
C2-Complex
R2
+
R1
R2
R1
Boruah, D.; Sarmah, G.; Bharadwaj, S.; Bora, U.
Organometal. Chem. 2013, 27, 688
Appl.
Entry
R1
R2
Time (h)
Yield (%)
75
1
2
4-OMe
4-OMe
4-OMe
4-OMe
4-Me
4-Me
4-Me
4-Me
2-Me
H
H
2
2
2
2
2
2
2
2
6
2
3
3
6
6
4. Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151.
OMe
t-Butyl
Cl
72
5. (a) Das, P.; Sarmah, C.; Tairai, A.; Bora, U. Appl. Organometal.
Chem. 2011, 25, 283; (b) Chahen, L.; Therrien, B.; Suss-Fink, G.
Eur. J. Inorg. Chem., 2007, 32, 5045.
3
75
4
70
5
H
80
6. (a) Botella, L.; Najera, C. Angew. Chem. Int. Ed. 2002, 41, 179;
(b) Botella, L.; Najera, C. J. Organomet. Chem. 2002, 663, 46; (c)
Beletskaya, I. P.; Cheprakov, A. V. J. Organomet. Chem, 2004,
689, 4055; (d) Alonso, D. A.; Najera, C. Chem. Soc. Rev, 2010,
39, 2891.
6
OMe
t-Butyl
Cl
78
7
80
8
80
9
H
40
10
11
12
13
14
H
85
7. (a) Shahnaz, N.; Banik, B.; Das, P., Tetrahedron Lett. 2013, 54,
2886; (b) Banik, B.; Tairai, A.; Shahnaz, N.; Das, P., Tetrahedron
Lett. 2012, 53, 5627; (c) Kostas, I. D.; Steele, B. R.; Terzis, A.;
Amosova, S. V.; Martynov, A. V.; Makhaeva, N. A., Eur. J.
Inorg. Chem. 2006, 2642.
H
OMe
t-Butyl
H
80
H
82
4-COMe
4-NO2
40
H
55
Reaction conditions: arylchloride (0.5 mmol), arylboronic acid (0.55 mmol),
8. (a) Pasini, A.; Ferrari, R.P.; Lanfranconi, S.; Pozzi, A.; Laurenti,
E.; Moroni, M. Inorganica Chimica Acta 1997, 266, 1-3; (b)
Naeimi, H.; Rabiei, K.; Salimi, F. Bull. Korean Chem. Soc. 2008,
29, 2445-2448.
Pd-complex C2 (1 mol %), K2CO3 (1.5 mmol), i-PrOH (2 mL), in air.
In conclusion, we have developed a simple and efficient
catalytic system based on Pd complex of tetradentate Schiff base
ligands for Suzuki–Miyaura reaction of aryl bromides with
arylboronic acids in water. Electronically diversified aryl
bromides underwent the coupling reaction with electronically
diversified arylboronic acids in excellent yields. The same
catalytic system is also effective for Suzuki Miyaura reaction of
less reactive aryl chlorides with arylbronic acids in isopropanol.
9. Gogoi, A.; Sarmah, G.; Dewan, A.; Bora, U.; Tetrahedron Lett.
2014, 55, 31 and references cited there in.
10. a) Lindstrom, U. M., Chem. Rev., 2002, 102, 2751;(b) Herrerias,
C. I.; Yao, C. X.; Li Z.; Li, C. J., Chem. Rev., 2007, 107,2546;
(c). Minakata S.; Komatsu, M., Chem. Rev., 2009, 109, 711.
11. Synthesis of complex C1: A methanolic solution of ligand L1
(330 mg, 1 mmol) was mixed with Pd(OAc)2 (224 mg, 1 mmol).
After refluxing the reaction mixture for 3 h with stirring, the
brown colour precipitate was filtered. The residue was washed
with hexane and recrystalized from chloroform. Yield: 85%. Anal.
Calcd (in %) for C21H16N2O2Pd; C: 58.01; H: 3.71; N: 6.44%.
Found, C: 58.18; H: 3.93; N: 6.13%. MS-ESI(CHCl3): m/z:
435[M+]; Selected IR frequency (cm-1, KBr): 1606 cm-1(vC=N). 1H
NMR (400 MHz, CDCl3) δ/ppm: 6.72(s, 1H, CH), 8.71(s, 2H,
CH=N), 7.01-7.09(m, 13H, Ph+Ph+Ph).
Acknowledgments
The authors acknowledge the Department of Science and
Technology, New Delhi for financial support for this work under
DST Woman Scientist Scheme (No SR/WOS-A/CS-78/2011(G).
References and notes
12. General procedure for Suzuki Miyaura reaction: A 25 mL
synthesizer tube had taken with a mixture of aryl halide (0.5
mmol), aryl boronic acid (0.55 mmol), base (1.5 mmol), Pd-
complex C1 (0.2 mol%) and the mixture was stirred in 2 mL of
water at 50 °C for the required time. After completion, the reaction
mixture was extracted with ether (3 × 20 mL). The combined
extract was washed with brine (2 × 20 mL) and dried over
Na2SO4. After evaporation of the solvent under reduced pressure,
the residue was chromatographed (silica gel, ethyl acetate–hexane:
1: 9) to obtain the desired products. The products were confirmed
by comparing the 1H and 13C NMR and mass spectral data with
authentic samples.
1. (a) Suzuki, A. Angew. Chem., Int. Ed., 2011, 50, 6722; (b) Suzuki
A., Yamamoto, Y., Chem. Lett., 2011, 40, 894; (c) Fihri, A.;
Bouhrara, M.; Nekoueishahraki, B; Basset, J.-M.; Polshettiwar,
V., Chem. Soc. Rev., 2011, 40, 5181; (d) Balanta, A.; Godard C.
Claver, C.; Chem. Soc. Rev., 2011, 40, 4973.; (e) Miyaura N.;
Suzuki, A., Chem. Rev., 1995, 95, 2457; (f ) Littke F. A.; Fu, G.
C., Angew. Chem., Int. Ed., 2002, 41, 4176; (g) Dupont, J..
Consorti C. S, Spencer, J., Chem. Rev., 2005, 105, 2527; (h)
Gaikwad, A. V. Holuigue, A. Thathagar, M. B. Elshof J. E.
Rothenberg, G., Chem.–Eur. J., 2007, 13, 6908; (i) Sellars J. D.;
Steel, P. G.; Chem. Soc. Rev., 2011, 40, 5170.
2.
(a) Kranenburg, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.
Eur. J. Inorg. Chem. 1998, 155; (b) Martin, R.; Buchwald S. L.,
Acc. Chem. Res. 2008, 41, 1461; (b) Bhattacharyya, P.; Woollins,
J. D. Polyhedron 1995, 14, 3367.
13. Bohm, V. P. W.; Gstottmayr, C. W. K.; Weskamp, T.; Hermann,
W. H., J.Organomet. Chem. 2000, 595, 186; (b) Shi, J.-C.; Yang,
P.-Y.; Tong, Q.; Wu, Y.; Peng, Y., J. Mol. Catal. A: Chem. 2006,
259, 7.
3. (a) Schareina, T.; Kepme, R. Angew. Chem. Int. Ed. 2002, 41,
1521; (b) Urgaonkar, S.; Nagarajan, M.; Verkade, J. G.