Organic Letters
Letter
(5) (a) Holland, H. L.; Manoharan, T. S.; Schweizer, F. Tetrahedron
Lett. 1991, 5, 335. (b) Sheppard, C. I.; Taylor, J. L.; Wiskur, S. L. Org.
Lett. 2011, 13, 3794.
(6) (a) Quallich, G. J.; Woodall, T. M. Tetrahedron Lett. 1993, 34,
785. (b) Zeror, S.; Collin, J.; Fiaud, J.-C.; Zouioueche, A. Adv. Synth.
the Michael/Henry reaction, as observed in entries 2−4 of
Table 1. By using the (S,S)-diphenylethylenediamine-derived
L1−Ni catalyst, the stereochemistry at the C2 position of the
resulting thiochromane is forced into the (S)-configuration by
nucleophilic attack of the L1−Ni-thiolate at the Si-face of the β-
nitrostyrene. Since the L1−Ni-catalyzed Michael reaction of
benzenethiol with β-nitrostyrene results in a low level of
asymmetric induction (<5% ee), the formyl group of the 2-
mercaptobenzaldehydes must also interact with the L1−Ni
catalyst to contribute to the asymmetric induction. During the
Michael reaction of the L1−Ni-thiolate with the β-nitrostyrene,
the corresponding Ni-nitronate is generated, leading to the
formation of a 6-membered transition state complex which
includes the Ni atom. The long C−S bonds in this complex
force the 6-membered ring of the thiochromane to adopt a
strained half-boatlike conformation in which the eclipsed
interaction between the carbonyl and nitro groups is increased
if the carbonyl group remains in the equatorial position. The
Henry reaction then proceeds from the transition-state complex
(TS1), in which the C4−O−Ni bond is in the pseudoaxial
position, to give the (2S,3R,4R)-thiochromane.
In conclusion, the (S,S)-diphenylethylenediamine-derived
L1−Ni complex was found to catalyze the tandem asymmetric
Michael/Henry reaction of 2-mercaptobenzaldehydes with β-
nitrostyrenes to give a novel stereoisomer of (2S,3R,4R)-2-aryl-
3-nitrothiochroman-4-ols in up to 99% diastereoselectivity with
95% ee. The development of new diversity-oriented asymmetric
catalysis using IAP−metal catalysts and the application of these
reactions to the synthesis of biologically active scaffolds are
presently ongoing.
Catal. 2008, 350, 197. (c) Stepanenko, V.; Jesus, M. D.; Correa, W.;
́
́
́ ́
Bermudez, L.; Vazquez, C.; Guzman, I.; Ortiz-Marciales, M.
Tetrahedron: Asymmetry 2009, 20, 2659. (d) Manville, C. V.;
Docherty, G.; Padda, R.; Wills, M. Eur. J. Org. Chem. 2011, 6893.
(7) (a) Mercy, G.; Legay, R.; Lohier, J.-F.; Santos, J. S.-D. O.;
Levillain, J.; Gaumont, A.-C.; Glea, M. Org. Biomol. Chem. 2010, 8,
2520. (b) Dong, X.-Q.; Fang, X.; Wang, C.-J. Org. Lett. 2011, 13, 4426.
(c) Dong, X.-Q.; Fang, X.; Tao, H.-Y.; Zhou, X.; Wang, C.-J. Adv.
Synth. Catal. 2012, 354, 1141.
(8) Zeng, X. Chem. Rev. 2013, 113, 6864.
(9) Wang, W.; Li, H.; Wang, J.; Zu, L. J. Am. Chem. Soc. 2006, 128,
10354.
(10) Zu, L.; Wang, J.; Li, H.; Xie, H.; Jiang, W.; Wang, W. J. Am.
Chem. Soc. 2007, 129, 1036.
(11) Dodda, R.; Goldman, J. J.; Mandel, T.; Zhao, C.-G.; Broker, G.
A.; Tiekink, E. R. T. Adv. Synth. Catal. 2008, 350, 537.
(12) For the catalytic asymmetric construction of thiochromane or
thiochromene skeletons, see: (a) Rios, R.; Sunden, H.; Ibrahem, I.;
́
Zhao, G.-L.; Eriksson, L.; Cor
́
dova, A. Tetrahedron Lett. 2006, 47,
8547. (b) Rios, R.; Sunden, H.; Ibrahem, I.; Zhao, G.-L.; Cor
́
dova, A.
́
Tetrahedron Lett. 2006, 47, 8679. (c) Zu, L.; Xie, H.; Li, H.; Wang, J.;
Jiang, W.; Wang, W. Adv. Synth. Catal. 2007, 349, 1882. (d) Dodda, R.;
Mandel, T.; Zhao, C.-G. Tetrahedron Lett. 2008, 49, 1899. (e) Zhao,
́
́
G.-L.; Vesely, J.; Rios, R.; Ibrahem, I.; Sunden, H.; Cordova, A. Adv.
Synth. Catal. 2008, 350, 237. (f) Wang, J.; Xie, H.; Li, H.; Zu, L.;
Wang, W. Angew. Chem., Int. Ed. 2008, 47, 4177. (g) Gao, Y.; Ren, Q.;
Wu, H.; Li, M.; Wang, J. Chem. Commun. 2010, 46, 9232. (h) Liu, T.-
L.; He, Z.-L.; Wang, C.-J. Chem. Commun. 2011, 47, 9600. (i) Du, Z.;
Zhou, C.; Gao, Y.; Ren, Q.; Zhang, K.; Cheng, H.; Wang, W.; Wang, J.
Org. Biomol. Chem. 2012, 10, 36. (j) Choudhury, A. R.; Mukherjee, S.
Adv. Synth. Catal. 2013, 355, 1989.
ASSOCIATED CONTENT
■
S
(13) For the selected examples of catalytic asymmetric Michael/
Henry reaction constructing multiple stereogenic centers, see:
(a) Hayashi, Y.; Okano, T.; Aratake, S.; Hazelard, D. Angew. Chem.,
Int. Ed. 2007, 46, 4922. (b) Tan, B.; Chua, P. J.; Li, Y.; Zhong, G. Org.
Lett. 2008, 10, 2437. (c) Varga, S.; Jakab, G.; Drahos, L.; Holczbauer,
* Supporting Information
Experimental procedures and characterization data; copies of
1H and 13C spectra. This material is available free of charge via
́
M.; Soos, T. Org. Lett. 2011, 13, 5416. (d) Chintala, P.; Ghosh, S. K.;
Long, E.; Headley, A. D.; Ni, B. Adv. Synth. Catal. 2011, 353, 2905.
(e) Singh, S.; Srivastava, A.; Samanta, S. Tetrahedron Lett. 2012, 53,
6087. (f) Albertshofer, K.; Tan, B.; Barbas, C. F., III. Org. Lett. 2012,
14, 1834. (g) Hou, W.; Zheng, B.; Chen, J.; Peng, Y. Org. Lett. 2012,
14, 2378. (h) Shi, D.; Xie, Y.; Zhou, H.; Xia, C.; Huang, H. Angew.
Chem., Int. Ed. 2012, 51, 1248. (i) Raimondi, W.; Duque, M. M. S.;
Goudedranche, S.; Quintard, A.; Constantieux, T.; Bugaut, X.; Bonne,
D.; Rodriguez, J. Synthesis 2013, 45, 1659. (j) Jaiswal, P. K.; Biswas, S.;
Singh, S.; Pathak, B.; Mobin, S. M.; Samantha, S. RSC Adv. 2013, 3,
10644. (k) Wu, L.; Wang, Y.; Song, H.; Tang, L.; Zhou, Z.; Tang, C.
Adv. Synth. Catal. 2013, 355, 1053. (l) Loh, C. C. J.; Hack, D.; Enders,
D. Chem. Commun. 2013, 49, 10230. (m) Loh, C. C. J.; Atodiresei, I.;
Enders, D. Chem.Eur. J. 2013, 19, 10822. (n) Enders, D.; Hahn, R.;
Atodiresei, I. Adv. Synth. Catal. 2013, 355, 1126.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by a Grant-in Aid for Scientific
Research from the Ministry of Education, Culture, Sports,
Science and Technology (Japan) and by the Workshop on
Chirality in Chiba University (WCCU).
(14) Stavenger, R. A.; Schreiber, S. L. Angew. Chem., Int. Ed. 2001, 40,
3417.
(15) (a) Arai, T.; Yokoyama, N.; Yanagisawa, A. Chem.Eur. J. 2008,
14, 2052. (b) Arai, T.; Yokoyama, N. Angew. Chem., Int. Ed. 2008, 47,
4989. (c) Yokoyama, N.; Arai, T. Chem.Commun. 2009, 3285. (d) Arai,
T.; Yokoyama, N.; Mishiro, A.; Sato, H. Angew. Chem., Int. Ed. 2010,
49, 7895. (e) Awata, A.; Arai, T. Chem.Eur. J. 2012, 18, 8278.
(f) Awata, A.; Wasai, M.; Masu, H.; Kado, S.; Arai, T. Chem.Eur. J.
2014, 20, 2470.
REFERENCES
(1) Shen, H. C. Tetrahedron 2009, 65, 3931.
(2) Vilet, L. A. V.; Rodenhuis, N.; Dijkstra, D.; Wikstrom, H.;
Pugsley, T. A.; Serpa, K. A.; Meltzer, L. T.; Heffner, T. G.; Wise, L. D.;
Lajiness, M. E.; Huff, R. M.; Svensson, K.; Sundell, S.; Lundmmark, M.
J. Med. Chem. 2000, 43, 2871.
(3) Chen, Y.; Zhang, Q.; Zhang, B.; Xia, P.; Xia, Y.; Yang, Z.-Y.;
Kilgore, N.; Wild, C.; Morris-Natschke, S. L.; Lee, K.-H. Bioorg. Med.
Chem. 2004, 12, 6383.
■
̈
(4) Bolognesi, M. L.; Bortolini, M.; Cavalli, A.; Andrisano, V.; Rosini,
M.; Minarini, A.; Melchiorre, C. J. J. Med. Chem. 2004, 47, 5945.
1703
dx.doi.org/10.1021/ol500361w | Org. Lett. 2014, 16, 1700−1703