Ye-Xiang Xie et al.
COMMUNICATIONS
Acknowledgements
We thank the Natural Science Foundation of China (No.
21172060), Specialized Research Fund for the Doctoral Pro-
gram of Higher Education (No. 20120161110041), and
Hunan Provincial Natural Science Foundation of China (No.
13JJ2018) for financial support. Dr. R.-J. Song also thanks
the Hunan Province Science and Technology Project (No.
2013RS4026) and China Postdoctoral Science Foundation
(No. 2012M511716).
Scheme 3. Possible mechanism.
References
[1] a) E. Breitmaier, Terpenes: Flavors, Fragrances, Phar-
maca, Pheromones, Wiley-VCH, Weinheim, Germany,
2007; b) S. Kirchberg, R. Frçhlich, A. Studer, Angew.
Chem. 2010, 122, 7029; Angew. Chem. Int. Ed. 2010, 49,
6877; c) R. Hollingsworth, G. Wang, Chem. Rev. 2000,
100, 4267; d) S. F. Martin, J. Nat. Prod. 1992, 55, 1718.
[2] a) V. Sciannamea, R. Jerome, C. Detrembleur, Chem.
Rev. 2008, 108, 1104; b) A. Studer, T. Schulte, Chem.
Rec. 2005, 5, 27; c) C. J. Hawker, in: Handbook of Rad-
ical Polymerization, (Eds.: K. Matyjazewski, T. P.
Davis), Wiley Interscience, Hoboken, 2002, pp 463–
522; d) G. V. Korolev, A. P. Marchenko, Russ. Chem.
Rev. 2000, 69, 409.
of TEMPO to intermediate C readily takes place
leading to intermediate D. Finally, reductive elimina-
tion of intermediate D releases the desired product 2
and regenerates the active [Cu] species.
In summary, we have established the first example
of the oxyamination of 2-aryloxy-1-arylethanones
with TMEPO for the synthesis of substituted alkoxy-
ACHTUNGTRENNUNGamines using the Cu/Fe catalyst. Importantly, the Cu/
Fe catalyst could retain its catalytic reactivity after
several recyclings. Work to extend the reaction and
application of this Cu/Fe catalyst is currently under-
way in our laboratory.
[3] a) K.-U. Schoening, W. Fischer, S. Hauck, A. Dichtl, M.
Kuepfert, J. Org. Chem. 2009, 74, 1567; b) R. C. R.
Pfaendner, C. R. Chim. 2006, 9, 1338.
[4] S. P. Brown, M. P. Brochu, C. J. Sinz, D. W. C. MacMil-
Experimental Section
lan, J. Am. Chem. Soc. 2003, 125, 10808.
[5] G. Zhong, Angew. Chem. 2003, 115, 4379; Angew.
Chem. Int. Ed. 2003, 42, 4247.
[6] M. P. Sibi, M. Hasagawa, J. Am. Chem. Soc. 2007, 129,
4124.
Typical Experimental Procedure for the Copper-
Catalyzed a-Aminoxylation Reaction
To a Schlenk tube were added a-arlyoxyacetophenones
1 (0.2 mmol), 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)
2 (1.2 equiv.), 10 mol% Cu (Cu/Fe=3.4 mg) and MeCN
(2 mL). Then the contents of the tube was stirred at 808C
for the indicated time until complete consumption of start-
ing material as monitored by TLC and/or GC-MS analysis.
After the reaction was finished, the reaction mixture was
washed with brine. The aqueous phase was re-extracted with
ethyl acetate. The combined organic extracts were dried
over Na2SO4, concentrated under vacuum, and the resulting
residue was purified by silica gel column chromatography
(hexane/ethyl acetate) to afford the pure product.
[7] a) T. D. Beeson, A. Mastracchio, J. B. Hong, K. Ashton,
D. W. C. MacMillan, Science 2007, 316, 582; b) M. Am-
atore, T. D. Beeson, S. P. Brown, D. W. C. MacMillan,
Angew. Chem. 2009, 121, 5223; Angew. Chem. Int. Ed.
2009, 48, 5121; c) J. E. Wilson, A. D. Casarez, D. W. C.
MacMillan, J. Am. Chem. Soc. 2009, 131, 11332; d) S.
Rendler, D. W. C. MacMillan, J. Am. Chem. Soc. 2010,
132, 5027; e) J. F. Van Humbeck, S. P. Simonovich,
R. R. Knowles, D. W. C. MacMillan, J. Am. Chem. Soc.
2010, 132, 10012; f) S. P. Simonovich, J. F. Van Hum-
beck, D. W. C. MacMillan, Chem. Sci. 2012, 3, 58.
[8] T. Kano, H. Mii, K. Maruoka, Angew. Chem. 2010, 122,
6788; Angew. Chem. Int. Ed. 2010, 49, 6638.
[9] For special reviews on the use of TEMPO in organic
synthesis, see: a) T. Vogler, A. Studer, Synthesis 2008,
1979; b) A. Studer, Chem. Soc. Rev. 2004, 33, 267; c) L.
Tebben, A. Studer, Angew. Chem. 2011, 123, 5138;
Angew. Chem. Int. Ed. 2011, 50, 5034.
[10] R.-J. Song, Y. Liu, R.-X. Hu, Y.-Y. Liu, J.-C. Wu, X.-H.
Yang, J.-H. Li, Adv. Synth. Catal. 2011, 353, 1467.
[11] a) F. Krçhnke, Chem. Ber. 1947, 80, 298; b) B. D. Kul-
kani, A. S. Rao, Indian J. Chem. 1975, 13, 1097; c) J. S.
Nimitz, H. S. Mosher, J. Org. Chem. 1981, 46, 211.
2-Phenoxy-1-phenyl-2-(2,2,6,6-tetramethylpiperidin-1-yl-
oxy)ethanone (2a): White soild, mp 77.8–78.68C (uncorrect-
1
ed); H NMR (500 MHz): d=8.27 (d, J=7.5 Hz, 2H), 7.56
(t, J=7.5 Hz, 1H), 7.47 (t, J=7.5 Hz, 2H), 7.23 (t, J=
7.5 Hz, 2H), 7.02 (d, J=8.0 Hz, 2H), 6.95 (t, J=7.5 Hz,
1H), 6.02 (s, 1H), 1.59–1.45 (m, 5H), 1.37 (s, 3H), 1.32–1.31
(m, 1H), 1.21 (s, 3H), 1.16 (s, 3H), 1.02 (s, 3H); 13C NMR
(125 MHz): d=192.6, 156.7, 133.4, 133.0, 130.4, 129.4, 128.2,
122.0, 109.8, 61.1, 60.0, 40.1, 40.0, 33.8, 33.1, 20.9, 20.2, 17.0;
IR (KBr): n=1687, 1507 cmÀ1; LR-MS (EI, 70 eV): m/z
(%)=367 (M+, 1), 352 (1), 183 (3), 156 (100); HR-MS (EI):
m/z=368.2230, calcd. for C23H30NO3 [(M+H)+]: 368.2226.
3390
ꢁ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2013, 355, 3387 – 3390