Communication
ChemComm
3 (a) B. Hoefgen, M. Decker, P. Mohr, A. M. Schramm, S. A. F. Rostom,
H. El-Subbagh, P. M. Schweikert, D. R. Rudolf, M. U. Kassack and
J. Lehmann, J. Med. Chem., 2006, 49, 760; (b) W. A. da Silva,
M. T. Rodrigues, N. Shankaraiash, R. B. Ferreira, C. K. Z. Andrade and
R. A. Pilli, Org. Lett., 2009, 11, 3238; (c) D. Ghislieri, A. P. Green, M. Pontini,
S. C. Willies, I. Rowles, A. Frank, G. Grogan and N. J. Turner, J. Am. Chem.
Soc., 2013, 135, 10863; (d) I. Chakraborty and S. Jana, Synthesis, 2013,
3325; (e) C. S. Lood and A. M. P. Koskinen, Chem. Heterocycl. Compd.,
due to the enormous steric hindrance between the extremely
bulky TBDPS group and the neighboring ring for the 6-endo-dig
pathway. It came as no surprise that the 5-exo-dig product was
obtained exclusively because of its significantly lower energy
barrier. When a Bn functional group was on the nitrogen of
indole and a c-Pr functional group was on the propiolamide
moiety, neither the electronic effect nor the steric effect played
a dominant role. The transition state energy barrier (1b-5-ts vs.
1b-6-ts) came in between 1.7 kcal molꢀ1 and a mixture of 5-exo-
dig cyclization product and 6-endo-dig cyclization product was
obtained.
´
2015, 50, 1367; ( f ) M. Perez, M. Espadinha and M. M. M. Santos, Curr.
Pharm. Des., 2015, 21, 5518; (g) N. S. S. Reddy, R. A. Babu and
B. V. S. Reddy, Synthesis, 2016, 1079; (h) D. Pressnitz, E. M. Fischereder,
J. Pletz, C. Kofler, L. Hammerer, K. Hiebler, H. Lechner, N. Richter, E. Eger
and W. Kroutil, Angew. Chem., Int. Ed., 2018, 130, 10843.
4 (a) S. M. Allin, C. I. Thomas, J. E. Allard, M. Duncton, M. R. J. Elsegooda
and M. Edgara, Tetrahedron Lett., 2003, 44, 2335; (b) F. D. King,
J. Heterocycl. Chem., 2007, 44, 1459; (c) T. Yang, L. Campbell and
In conclusion, a common strategy for the pathway-switchable
syntheses of both indolizino[8,7-b]indole and indolo[2,3-a]-
quinolizine scaffolds has been developed based on the cascade
6-exo-dig/5-exo-dig and 6-exo-dig/6-endo-dig cyclosiomerization of
tryptamine N-ethynylpropiolamide substrates. The substitutions
on the nitrogen of indole and the alkyne of propiolamide have a
great influence on the selectivity of the products. A DFT calcula-
tion provided a theoretical insight into the regioselectivity in the
formation of these two scaffolds. This study offered a reliable
and predictable method to access both indolizino[8,7-b]indole
and indolo[2,3-a]quinolizine derivatives in a switchable fashion.
This project was supported by the Natural Science Founda-
tion of Liaoning Province of China (Grants 20170540855) and
the Foundation of Liaoning Province Education Administration
of China (Grants 2017LQN08). We are indebted to the program
for the innovative research team of the Ministry of Education
and the program for the Liaoning innovative research team in
university, Liaoning Revitalization Talents Program, Liaoning
BaiQianWan Talents Program and the Career Development
Support Plan for Young and Middle-aged Teachers in Shenyang
Pharmaceutical University.
´
´
D. J. Dixon, J. Am. Chem. Soc., 2007, 129, 12070; (d) A. Gonzalez-Gomez,
´
´
G. Domınguez and J. Perez-Castells, Tetrahedron Lett., 2009, 65, 3378;
(e) S. Mangalaraj and C. R. Ramanathan, RSC Adv., 2012, 2, 12665.
5 (a) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang and
R. P. Hsung, Chem. Rev., 2010, 110, 5064; (b) G. Evano, A. Coste and
K. Jouvin, Angew. Chem., Int. Ed., 2010, 49, 2840; (c) G. Evano,
K. Jouvin and A. Coste, Synthesis, 2013, 17; (d) X.-N. Wang, H.-S.
Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L. Kedrowski and R. P. Hsung,
Acc. Chem. Res., 2014, 47, 560; (e) A. M. Cook and C. Wolf, Tetra-
hedron Lett., 2015, 56, 2377; ( f ) C. Shu, Y.-H. Wang, B. Zhou, X.-L. Li,
Y.-F. Ping, X. Lu and L.-W. Ye, J. Am. Chem. Soc., 2015, 137, 9567;
(g) L. Li, B. Zhou, Y.-H. Wang, C. Shu, Y.-F. Pan, X. Lu and L.-W. Ye,
Angew. Chem., Int. Ed., 2015, 54, 8245; (h) C. D. Campbell, R. L.
Greenaway, O. T. Holton, P. R. Walker, H. A. Chapman, C. A. Russell,
G. Carr, A. L. Thomson and E. A. Anderson, Chem. – Eur. J., 2015,
21, 12627; (i) L. Hu, S. Xu, Z. Zhao, Y. Yang, Z. Peng, M. Yang,
C. Wang and J. Zhao, J. Am. Chem. Soc., 2016, 138, 13135; ( j) M. Lin,
L. Zhu, J. Xia, Y. Yu, J. Chen, Z. Mao and X. Huang, Adv. Synth.
Catal., 2018, 360, 2280; (k) F. Pan, C. Shu and L.-W. Ye, Org. Biomol.
Chem., 2016, 14, 9456; (l) G. Duret, V. L. Fouler, P. Bisseret, V. Bizet
and N. Blanchard, Eur. J. Org. Chem., 2017, 6816; (m) G. Evano,
B. Michelet and C. Zhang, C. R. Chim., 2017, 20, 648; (n) R. H. Dodd
and K. Cariou, Chem. – Eur. J., 2018, 24, 2297.
6 (a) Y. Zhang, R. P. Hsung, X. Zhang, J. Huang, B. W. Slafer and A. Davis,
Org. Lett., 2005, 7, 1047; (b) N. Zheng, Y.-Y. Chang, L.-J. Zhang, J.-X. Gong
and Z. Yang, Chem. – Asian J., 2016, 11, 371; (c) L. Li, X.-M. Chen,
Z.-S. Wang, B. Zhou, X. Liu, X. Lu and L.-W. Ye, ACS Catal., 2017, 7, 4004;
(d) Y. Wang, J. Lin, X. Wang, G. Wang, X. Zhang, B. Yao, Y. Zhao, P. Yu,
B. Lin, Y. Liu and M. Cheng, Chem. – Eur. J., 2018, 24, 4026; (e) Y. Wang,
X. Wang, J. Lin, B. Yao, G. Wang, Y. Zhao, X. Zhang, B. Lin, Y. Liu,
M. Cheng and Y. Liu, Adv. Synth. Catal., 2018, 360, 1483; ( f ) Y. Pang,
G. Liang, F. Xie, H. Hu, C. Du, X. Zhang, M. Cheng, B. Lin and Y. Liu,
Org. Biomol. Chem., 2019, 17, 2247.
Conflicts of interest
There are no conflicts to declare.
7 (a) C. Ferrer and A. M. Echavarren, Angew. Chem., Int. Ed., 2006, 45, 1105;
(b) H. Imase, K. Noguchi, M. Hirano and K. Tanaka, Org. Lett., 2008,
10, 3563; (c) K. Hirano, Y. Inaba, T. Watanabe, S. Oishi, N. Fujii and
H. Ohno, Adv. Synth. Catal., 2010, 352, 368; (d) K. Hirano, Y. Inaba,
N. Takahashi, M. Shimano, S. Oishi, N. Fujii and H. Ohno, J. Org. Chem.,
2011, 76, 1212; (e) M. S. Kirillova, M. E. Muratore, R. Dorel and
Notes and references
1 (a) L. Zhang, C.-J. Zhang, D.-B. Zhang, J. Wen, X.-W. Zhao, Y. Li and
K. Gao, Tetrahedron Lett., 2014, 55, 1815; (b) C.-E. Nge, K.-W. Chong,
N. F. Thomas, S.-H. Lim, Y.-Y. Low and T.-S. Kam, J. Nat. Prod., 2016,
79, 1388; (c) B. Boucherle, R. Haudecoeur, E. F. Queiroz, M. De
Waard, J. Wolfender, R. J. Robinse and A. Boumendjel, Nat. Prod.
Rep., 2016, 33, 1034; (d) M. P. Rocha, P. R. V. Campana, D. O. Scoaris,
V. L. de Almeida, J. C. D. Lopes, A. F. Silva, L. Pieters and C. G. Cilva,
Phytother. Res., 2018, 32, 2021; (e) M. M. Moran-Santa Maria,
B. J. Sherman, K. Brady, N. L. Baker, J. M. Hyer, C. Ferland and
A. L. McRae-Clark, Pharmacol., Biochem. Behav., 2018, 165, 63.
2 (a) M. R. Goldberg and D. Robertson, Pharmacol. Rev., 1983, 35, 143;
(b) E. W. Baxter and P. S. Mariano, in Alkaloids: Chemical and
Biological Perspectives, ed. S. W. Pelletier, Springer-Verlag, New York,
1992, vol. 8, p. 197; (c) F.-E. Chen and J. Huang, Chem. Rev., 2005,
¨
A. M. Echavarren, J. Am. Chem. Soc., 2016, 138, 3671; ( f ) F. Schroder,
U. K. Sharma, M. Mertens, F. Devred, D. P. Debecker, R. Luque and
E. V. Van der Eycken, ACS Catal., 2016, 6, 8156; (g) T. Vacala, L. P. Bejcek,
C. G. Williams, A. C. Williamson and P. A. Vadola, J. Org. Chem., 2017,
82, 2558; (h) F. M. Miloserdov, M. S. Kirillova, M. E. Muratore and
A. M. Echavarren, J. Am. Chem. Soc., 2018, 140, 5393.
´
˜
´
˜
8 C. Nieto-Oberhuber, S. Lopez, M. P. Munoz, D. J. Cardenas, E. Bunuel,
C. Nevado and A. M. Echavarren, Angew. Chem., Int. Ed., 2005,
44, 6146.
´
´
´
9 C. H. M. Amijs, V. Lopez-Carrillo, M. Raducan, P. Perez-Galan,
C. Ferrer and A. M. Echavarren, J. Org. Chem., 2008, 73, 7721.
105, 4671; (d) S. Anitha and B. D. R. Kumari, Asian J. Plant Sci., 2013, 10 (a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270;
12, 28.
(b) R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett., 2011, 2, 2810.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 14418--14421 | 14421