Organic Letters
Letter
(6) Chatani et al. reported a similar Cu-catalyzed C−H amination of
2-phenylpyridine with arylamines shortly after the appearance of ref 5:
Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett. 2006, 35, 842.
(7) For a pioneering report of Cu-catalyzed intramolecular C−H
amination of amidines to form benzimidazoles, see: Brasche, G.;
Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932. Electrophilic
substitution and nitrene pathways were proposed for this trans-
formation.
(8) For notable work on the Cu-catalyzed C−H amination of azoles,
see: (a) Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A. Org. Lett.
2009, 11, 1607. (b) Wang, Q.; Schreiber, S. L. Org. Lett. 2009, 11,
5178. (c) Kawano, T.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem.
Soc. 2010, 132, 6900.
(20) Suess, A. M.; Ertem, M. Z.; Cramer, C. J. S.; Stahl, S. J. Am.
Chem. Soc. 2013, 135, 9797. In this study, Stahl et al. observed a rare
divergence between organometallic and SET mechanisms for AQ-
directed Cu-catalyzed C−H oxidation of benzamides. A N,N-bidentate
organometallic CuIII intermediate was proposed for the ortho C−H
methoxylation (KIE > 5). A N,N-bidentate CuII intermediate was
proposed for SET-facilitated non-directed para chlorination (KIE ∼1).
(21) The ortho position of aniline structure 8 and 10 is in closer
proximity to a Cu center than in benzylamine structure 3 and 5.
(22) For use of hypervalent iodine reagents in Cu-catalyzed C−H
functionalizations: (a) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J.
Am. Chem. Soc. 2008, 130, 8172. (b) Mancheno, D. E.; Thornton, A.
R.; Stoll, A. H.; Kong, A.; Blakey, S. B. Org. Lett. 2010, 12, 4110.
(c) Cho, S. H.; Yoon, J.; Chang, S. J. Am. Chem. Soc. 2011, 133, 5996.
(23) We suspect that Mg2+ may also form a N,N bidentate complex
with 2, which enables a similar O-ligated Cu-catalyzed ortho
amination.
(9) For an elegant study on Cu-catalyzed ortho C−H azidination of
anilines at room temperature, see: Tang, C.; Jiao, N. J. Am. Chem. Soc.
2012, 134, 18924. A SET-mediated mechanism was proposed in this
study.
(24) It is unclear why acyclic amines are unreactive; increased steric
hindrance may play a role. The low reactivity of 5-membered
pyrrolidine may be explained by its high tendency toward oxidation at
the α-position.
(25) It is unclear whether any β-aminated product was formed from
65 in ref 11d.
(26) The involvement of an O-ligated Cu intermediate via SEAr-like
metalation (see 9) cannot be completely ruled out. For a relevant
study: Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q. J. Am. Chem.
Soc. 2010, 132, 13217. An organometallic mechanism featuring SEAr
metalation was proposed for this Cu-catalyzed intramolecular C−H
amination of N-aryl-2-aminopyridine. However, distinct from ref 16
and this work, a primary KIE (2.4) was observed.
(10) For selected recent reports on Cu-catalyzed C−H aminations
and oxygenation: (a) Michaudel, Q.; Thevenet, D.; Baran, P. S. J. Am.
Chem. Soc. 2012, 134, 2547. (b) Ni, Z.; Zhang, Q.; Xiong, T.; Zheng,
Y.; Li, Y.; Zhang, H.; Zhang, J.; Liu, Q. Angew. Chem., Int. Ed. 2012, 51,
1244. (c) Gallardo-Donaire, J.; Martin, R. J. Am. Chem. Soc. 2013, 135,
9350. (d) Bhadra, S.; Dzik, W. I.; Goossen, L. J. Angew. Chem., Int. Ed.
2013, 52, 2959. (e) Bhadra, S.; Matheis, C.; Katayev, D.; Goossen, L. J.
Angew. Chem., Int. Ed. 2013, 52, 9279.
(11) (a) Tran, L. D.; Roane, J.; Daugulis, O. Angew. Chem., Int. Ed.
2013, 52, 6043. (b) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem.
Soc. 2012, 134, 18237. (c) Truong, T.; Klimovica, K.; Daugulis, O. J.
Am. Chem. Soc. 2013, 135, 9432. (d) Roane, J.; Daugulis, O. Org. Lett.
2013, 15, 5842.
(27) (a) For an excellent study on CuIII-mediated C−H
functionalization, see: King, A. E.; Huffman, L. M.; Casitas, A.;
Costas, M.; Ribas, X.; Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 12086.
CuIII intermediates have been invoked often in hypervalent iodine-
mediated Cu-catalyzed reactions: (b) Seayad, J.; Seayad, C.; Chai, L. L.
Org. Lett. 2010, 12, 1412. (c) Chen, B.; Hou, X.-L.; Li, Y.-X.; Wu, Y.-D.
J. Am. Chem. Soc. 2011, 133, 7668. (d) Sanjaya, S.; Chiba, S. Org. Lett.
2012, 14, 5342. For additional examples, see ref 22.
(12) (a) Nishino, M.; Hirano, K.; Satoh, K. T.; Miura, M. Angew.
Chem., Int. Ed. 2013, 52, 4457. (b) Odani, R.; Hirano, K.; Satoh, T.;
Miura, M. J. Org. Chem. 2013, 78, 11045.
(13) While this manuscript was under review for a different journal, a
́
very similar work by Carretero et al. appeared: Martínez, A. M.;
Rodríguez, N.; Arrayas, R. G.; Carretero, J. C. Chem. Commun. 2014,
50, 2801.
́
(14) (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc.
2005, 127, 13154. (b) Nadres, E. T.; Daugulis, O. J. Am. Chem. Soc.
2012, 133, 7. (c) Nadres, E. T.; Santos, G. I. F.; Shabashov, D.;
Daugulis, O. J. Org. Chem. 2013, 78, 9689.
(15) (a) He, G.; Chen, G. Angew. Chem., Int. Ed. 2011, 50, 5192.
(b) He, G.; Zhao, Y.; Zhang, S.-Y.; Lu, C.; Chen, G. J. Am. Chem. Soc.
2012, 134, 3. (c) Zhang, S.-Y.; He, G.; Zhao, Y.; Wright, K.; Nack, W.
A.; Chen, G. J. Am. Chem. Soc. 2012, 134, 7313. (d) Zhao, Y.; He, G.;
Nack, W. A.; Chen, G. Org. Lett. 2012, 14, 2948. (e) Zhang, S.-Y.; He,
G.; Nack, W. A.; Zhao, Y.; Li, Q.; Chen, G. J. Am. Chem. Soc. 2013,
135, 2124.
(16) For a recent review on bidentate ligands for metal-catalyzed C−
H functionalization: Rouguet, G.; Chatani, N. Angew. Chem., Int. Ed.
2013, 52, 11726.
(17) For a related O-ligation mode in Cu-catalyzed intramolecular
C−H oxygenation of benzanilides to form benzoxazoles, see:
(a) Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47, 6411.
(b) Ueda, S.; Nagasawa, H. J. Org. Chem. 2009, 74, 4272. An
electrophilic metalation mechanism was proposed based on the lack of
KIE and higher reactivity for electron-rich substrates. Interestingly,
Stahl suggested that the SET pathway could also be possible for this
reaction (see ref 3c).
(18) For three different X-ray structures of complexes of 2 with CuII
featuring distinct O,N- and N,N-bidentate chelation modes: (a) Ray,
M.; Mukherjee, R.; Richardson, J. F.; Mashuta, M. S.; Buchanan, R. M.
J. Chem. Soc., Dalton Trans. 1994, 965. (b) Morsali, A.; Ramazani, A.;
Mahjoub, A. R. J. Coord. Chem. 2003, 56, 1555. (c) Gomes, L.; Low, J.
N.; Valente, M. A. D. C.; Freire, C.; Castro, B. Acta Crystallogr., Sect. C:
Cryst. Struct. Commun. 2007, 63, m293.
(19) While constraining substrate conformation using gem-dimethyl
groups helps to overcome this kinetic inertness to a certain extent, it
also dramatically limits the substrate scope of this transformation.
1767
dx.doi.org/10.1021/ol500464x | Org. Lett. 2014, 16, 1764−1767