Organic Letters
Letter
Scheme 2. Substrate Scope of NHC-Catalyzed Anodic
Oxidation of Aldehydes to Thioesters
ACKNOWLEDGMENTS
■
a
Financial support of this research by the University of
Washington, the Washington Technology Center, SpringStar,
Inc., and the American Chemical Society Petroleum Research
Fund (ACS PRF). We thank Candice N. Cooper (Department
of Chemistry, University of Washington) for assisting in the
synthesis of the thiazolium precatalysts.
REFERENCES
■
(1) For recent reviews, see: (a) De Sarkar, S.; Biswas, A.; Samanta, R.
C.; Studer, A. Chem.Eur. J. 2013, 19, 4664. (b) Maki, B. E.; Chan,
A.; Phillips, E. M.; Scheidt, K. A. Tetrahedron 2009, 65, 3102.
(c) Ekoue-Kovi, K.; Wolf, C. Chem.Eur. J. 2008, 14, 6302.
(2) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719.
(3) For selected recent examples, see: (a) Delany, E. G.; Fagan, C. L.;
Gundala, S.; Mari, A.; Broja, T.; Zeitler, K.; Connon, S. J. Chem.
Commun. 2013, 49, 6510. (b) Chiarotto, I.; Feroci, M.; Sotgiu, G.;
Inesi, A. Tetrahedron 2013, 69, 8088. (c) Murray, A. T.; Matton, P.;
Fairhurst, N. W. G.; John, M. P.; Carbery, D. R. Org. Lett. 2012, 14,
3656. (d) Lee, K.; Kim, H.; Hong, J. Angew. Chem., Int. Ed. 2012, 51,
5735. (e) Biswas, A.; De Sarkar, S.; Tebben, L.; Studer, A. Chem.
Commun. 2012, 48, 5190. (f) Kuwano, S.; Harada, S.; Oriez, R.;
Yamada, K.-i. Chem. Commun. 2012, 48, 145. (g) De Sarkar, S.;
Grimme, S.; Studer, A. J. Am. Chem. Soc. 2010, 132, 1190.
(h) Goswami, S.; Hazra, A. Chem. Lett. 2009, 38, 484. (i) Guin, J.;
De Sarkar, S.; Grimme, S.; Studer, A. Angew. Chem., Int. Ed. 2008, 47,
8727. (j) Maki, B. E.; Scheidt, K. A. Org. Lett. 2008, 10, 4331. (k) Liu,
Y.-K.; Li, R.; Yue, L.; Li, B.-J.; Chen, Y.-C.; Wu, Y.; Ding, L.-S. Org.
Lett. 2006, 8, 1521. (l) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905.
a
Reactions conducted at 45 °C in a three-neck flask under N2 with a
graphite anode, Pt basket cathode, 0.045 M Bu4NBr, 0.150 M
aldehyde, 0.300 M R′SH, 0.075 M DMAP, and constant cell potential
of +0.1 V (vs Ag/AgNO3). For 1−5 and 6−11 precatalysts, A-Mes
and A-DiPP were used, respectively. Reaction times ranged from 8 to
44 h and were monitored by 1H NMR spectroscopy and GC-MS until
production of thioester had ceased. Yields were determined by GC-MS
using 1,3,5-trimethoxybenzene as the internal standard (average of two
runs); isolated yields in parentheses. See Supporting Information for
experimental details.
(4) For selected recent examples, see: (a) Mohlmann, L.; Ludwig, S.;
̈
Blechert, S. Beilstein J. Org. Chem. 2013, 9, 602. (b) Toledo, H.;
Pisarevsky, E.; Abramovich, A.; Szpilman, A. M. Chem. Commun. 2013,
49, 4367. (c) Thai, K.; Wang, L.; Dudding, T.; Bilodeau, F.; Gravel, M.
Org. Lett. 2010, 12, 5708. (d) De Sarkar, S.; Studer, A. Org. Lett. 2010,
12, 1992. (e) Lin, L.; Li, Y.; Du, W.; Deng, W.-P. Tetrahedron Lett.
2010, 51, 3571. (f) Wong, F. T.; Patra, P. K.; Seayad, J.; Zhang, Y.;
Ying, J. Y. Org. Lett. 2008, 10, 2333. (g) Bode, J. W.; Sohn, S. S. J. Am.
Chem. Soc. 2007, 129, 13798. (h) Vora, H. U.; Rovis, T. J. Am. Chem.
Soc. 2007, 129, 13796. (i) Li, G.-Q.; Li, Y.; Dai, L.-X.; You, S.-L. Org.
Lett. 2007, 9, 3519. (j) Lin, L.; Li, Y.; Du, W.; Deng, W.-P. Tetrahedron
Lett. 2010, 51, 3571.
as benzyl, 2-chlorobenzyl, and 2-furfuryl each gave good yields
of the desired thioester. Additionally, cyclohexanethiol gave the
secondary thioester in 63% yield.
In summary, we have demonstrated a direct conversion of
aldehydes to thioesters. This integrated organocatalyzed
electrosynthetic approach achieves efficient anodic oxidation
of catalytically generated species and circumvents the need for
stoichiometric exogenous oxidants, high cell potentials, or
redox mediators while producing minimal byproducts. Opti-
mization of the strength and concentration of the base was
essential for minimizing unwanted disulfide formation and
achieving efficient thioesterification. This thioesterification
reaction provides good-to-excellent yields for a broad range
of aldehyde and thiol substrates.
(5) For examples of NHC-catalyzed thioesterification of aldehydes,
see: (a) Zhu, X.; Shi, Y.; Mao, H.; Cheng, Y.; Zhu, C. Adv. Synth. Catal.
2013, 355, 3558. (b) Ji, M.; Wang, X.; Lim, Y. N.; Kang, Y.-W.; Jang,
H.-Y. Eur. J. Org. Chem. 2013, 7881. (c) Uno, T.; Inokuma, T.;
Takemoto, Y. Chem. Commun. 2012, 48, 1901. (d) Singh, S.; Yadav, L.
D. S. Tetrahedron Lett. 2012, 53, 5136. (e) Sohn, S. S.; Bode, J. W.
Angew. Chem., Int. Ed. 2006, 45, 6021. (f) Kageyama, Y.; Murata, S. J.
Org. Chem. 2005, 70, 3140.
(6) (a) Kent, S. B. H. Angew. Chem., Int. Ed. 2013, 52, 11988.
(b) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc. Rev.
2013, 42, 5042. (c) Wang, P.; Danishefsky, S. J. J. Am. Chem. Soc.
2010, 132, 17045. (d) Matsuo, K.; Shindo, M. Org. Lett. 2010, 12,
5346. (e) Crich, D.; Sharma, I. Angew. Chem., Int. Ed. 2009, 48, 2355.
(f) Crich, D.; Sasaki, K. Org. Lett. 2009, 11, 3514. (g) Li, H.; Yang, H.;
Liebeskind, L. S. Org. Lett. 2008, 10, 4375. (h) Utsumi, N.; Kitagaki,
S.; Barbas, C. F., III. Org. Lett. 2008, 10, 3405. (i) Alonso, D. A.;
Kitagaki, S.; Utsumi, N.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2008,
47, 4588. (j) Yang, H.; Li, H.; Wittenberg, R.; Egi, M.; Huang, W.;
Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1132. (k) Iimura, S.;
Manabe, K.; Kobayashi, S. Org. Lett. 2003, 5, 101. (l) Dawson, P. E.;
Kent, S. B. H. Annu. Rev. Biochem. 2000, 69, 923. (m) Dawson, P. E.;
Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994, 266, 776.
(7) Rastetter, W. H.; Adams, J.; Frost, J. W.; Nummy, L. J.; Frommer,
J. E.; Roberts, K. B. J. Am. Chem. Soc. 1979, 101, 2752.
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed experimental procedures and characterization of all
new compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
(8) Finney, E. E.; Ogawa, K. A.; Boydston, A. J. J. Am. Chem. Soc.
2012, 134, 12374.
The authors declare no competing financial interest.
1930
dx.doi.org/10.1021/ol500459x | Org. Lett. 2014, 16, 1928−1931