Beilstein J. Org. Chem. 2017, 13, 313–322.
4. Pron, A.; Gawrys, P.; Zagorska, M.; Djurado, D.; Demadrille, R.
5. Bujak, P.; Kulszewicz-Bajer, I.; Zagorska, M.; Maurel, V.; Wielgus, I.;
Pron, A. Chem. Soc. Rev. 2013, 42, 8895–8999.
account the fact that the thiophene core is electron rich and
therefore can donate electron density to the core. It has to be
mentioned that together with increasing size of the substituent
and, as a consequence, dihedral angles between the substituent
and the central part of the molecule, the difference in electron-
density localization becomes more pronounced. In case of the
anthracene substituent an almost complete localization of the
HOMO on the central core and the LUMO on the anthracene
fragment is observed.
6. McCairn, M. C.; Kreouzis, T.; Turner, M. L. J. Mater. Chem. 2010, 20,
7. Mitschke, U.; Mena Osteritz, E.; Debaerdemaeker, T.; Sokolowski, M.;
Bäuerle, P. Chem. – Eur. J. 1998, 4, 2211–2224.
8. Mitschke, U.; Debaerdemaeker, T.; Bäuerle, P. Eur. J. Org. Chem.
2000, 425–437.
Conclusion
To summarize, we have shown that ethyl esters of 5'-aryl
3-decyl-2,2'-bithiophene-5-carboxylic acids can be prepared by
the palladium-catalyzed coupling of readily available com-
pounds, namely ethyl 3-decyl-2,2'-bithiophene-5-carboxylate
and aryl halides. Using these building blocks the synthesis of
new fluorescent conjugated 5'-aryl-substituted 2,5-bis(3-decyl-
2,2'-bithiophen-5-yl)-1,3,4-oxadiazoles was developed. DFT
calculations of the 5'-aryl-substituted 2,5-bis(3-decyl-2,2'-
bithiophen-5-yl)-1,3,4-oxadiazoles in methylene chloride indi-
cated that large-sized terminal substituents such as naphth-1-yl
or anthracen-9-yl induce twisting of the molecules’ segments
due to increasing steric hindrance. The quantum-computational
results perfectly predicted the observed experimental trends.
9. Lee, T.; Landis, C. A.; Dhar, B. M.; Jung, B. J.; Sun, J.; Sarjeant, A.;
Lee, H.-J.; Katz, H. E. J. Am. Chem. Soc. 2009, 131, 1692–1705.
10.Clavier, G.; Audebert, P. Chem. Rev. 2010, 110, 3299–3314.
11.Gong, Y.-H.; Miomandre, F.; Méallet-Renault, R.; Badré, S.;
Galmiche, L.; Tang, J.; Audebert, P.; Clavier, G. Eur. J. Org. Chem.
12.Ellinger, S.; Graham, K. R.; Shi, P.; Farley, R. T.; Steckler, T. T.;
Brookins, R. N.; Taranekar, P.; Mei, J.; Padilha, L. A.; Ensley, T. R.;
Hu, H.; Webster, S.; Hagan, D. J.; Van Stryland, E. W.; Schanze, K. S.;
Reynolds, J. R. Chem. Mater. 2011, 23, 3805–3817.
13.Crouch, D. J.; Skabara, P. J.; Lohr, J. E.; McDouall, J. J. W.;
Heeney, M.; McCulloch, I.; Sparrowe, D.; Shkunov, M.; Coles, S. J.;
Horton, P. N.; Hursthouse, M. B. Chem. Mater. 2005, 17, 6567–6578.
Supporting Information
14.Crouch, D. J.; Skabara, P. J.; Heeney, M.; McCulloch, I.; Coles, S. J.;
Hursthouse, M. B. Chem. Commun. 2005, 1465–1467.
Supporting Information File 1
Experimental, computational and analytical data
15.Sonar, P.; Santamaria, S. G.; Lin, T. T.; Sellinger, A.; Bolink, H.
16.Kostyuchenko, A. S.; Yurpalov, V. L.; Kurowska, A.; Domagala, W.;
Pron, A.; Fisyuk, A. S. Beilstein J. Org. Chem. 2014, 10, 1596–1602.
Acknowledgements
17.Fisyuk, A. S.; Demadrille, R.; Querner, C.; Zagorska, M.; Bleuse, J.;
18.Kostyuchenko, A. S.; Wiosna-Salyga, G.; Kurowska, A.; Zagorska, M.;
Luszczynska, B.; Grykien, R.; Glowacki, I.; Fisyuk, A. S.;
Domagala, W.; Pron, A. J. Mater. Sci. 2016, 51, 2274–2282.
A. S. F. and A.S. K. acknowledge partial financial support from
the Russian Foundation for Basic Research (15-43-04313-
Sibiria-a; 16-33-00340 mol_a) and the Ministry of Education
and Science of the Russian Federation (the Agreement number
02.a03.21.0008). A. J. S. gratefully acknowledges The Interdis-
ciplinary Centre for Mathematical and Molecular Modelling of
the University of Warsaw (ICM) for computational facilities
(grant no. G-33-17). Support of the Faculty of Chemistry of
Warsaw University of Technology is acknowledged by A.P.
19.Kurowska, A.; Kostyuchenko, A. S.; Zassowski, P.; Skorka, L.;
Yurpalov, V. L.; Fisyuk, A. S.; Pron, A.; Domagala, W.
20.Kotwica, K.; Kurach, E.; Louarn, G.; Kostyuchenko, A. S.; Fisyuk, A. S.;
Zagorska, M.; Pron, A. Electrochim. Acta 2013, 111, 491–498.
21.Zapala, J.; Knor, M.; Jaroch, T.; Maranda-Niedbala, A.; Kurach, E.;
Kotwica, K.; Nowakowski, R.; Djurado, D.; Pecaut, J.; Zagorska, M.;
22.Grykien, R.; Luszczynska, B.; Glowacki, I.; Kurach, E.;
Rybakiewicz, R.; Kotwica, K.; Zagorska, M.; Pron, A.; Tassini, P.;
Grazia Maglione, M.; De Girolamo Del Mauro, A.; Fasolino, T.;
Rega, R.; Pandolfi, G.; Minarini, C.; Aprano, S. Opt. Mater. 2014, 37,
References
1. Balan, A.; Gunbas, G.; Durmus, A.; Toppare, L. Chem. Mater. 2008,
2. Mishra, A.; Ma, C.-Q.; Bäuerle, P. Chem. Rev. 2009, 109, 1141–1276.
3. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2012, 112,
321