ACS Catalysis
Research Article
Complete experimental procedures and detailed NMR
Scheme 18. Mechanism of Gold(I)-Catalyzed
Hydroalkoxylation (in Black) Showing the Steps
Responsible for the Silver Effect (in Blue)
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank Dr. K. Eichele and the Institut fur Anorganische
Chemie for giving us access to their NMR spectrometer.
■
̈
Financial support by the state of Baden-Wurttemberg is greatly
̈
acknowledged.
REFERENCES
■
(1) For reviews on gold catalysis, see: (a) Rudolph, M.; Hashmi, A. S.
K. Chem. Soc. Rev. 2012, 41, 2448−2462. (b) Corma, V.; Leyva-Perez
́
,
A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657−1712. (c) Bandini, M.
Chem. Soc. Rev. 2011, 40, 1358−1367. (d) Boorman, T. C.; Larrosa, I.
Chem. Soc. Rev. 2011, 40, 1910−1925. (e) Shapiro, N. D.; Toste, F. D.
Synlett 2010, 2010, 675−691. (f) Sengupta, S.; Shi, X. ChemCatChem
2010, 2, 609−619. (g) Bongers, N.; Krause, N. Angew. Chem., Int. Ed.
2008, 47, 2178−2181. (h) Gorin, D. J.; Sherry, B. D.; Toste, F. D.
́
́
Chem. Rev. 2008, 108, 3351−3378. (i) Jimenez-Nunez, E.; Echavarren,
̃
A. M. Chem. Rev. 2008, 108, 3326−3350. (j) Li, Z.; Brouwer, C.; He,
C. Chem. Rev. 2008, 108, 3239−3265. (k) Arcadi, A. Chem. Rev. 2008,
108, 3266−3325. (l) Muzart, J. Tetrahedron 2008, 64, 5815−5849.
(m) Shen, H. C. Tetrahedron 2008, 64, 7847−7870. (n) Widenhoefer,
R. A. Chem. - Eur. J. 2008, 14, 5382−5391. (o) Gorin, D. J.; Toste, F.
was demonstrated that formation of G will induce changes in
the concentrations of in-cycle organogold intermediates and
H+, and only these changes are responsible for the observed
effect (not silver itself). The effect can be positive or negative
(see explanations in the main text). No silver effect takes place
if there is no accumulation of G in the reaction mixture. We
foresee that the formation of mixed silver−gold acetylide
complexes [RCC(AuL)(Ag)]+ might contribute to a silver
effect in reactions of some terminal alkynes.21 This subclass
remains to be explored.
Despite the ability to influence the rate of gold-catalyzed
hydroalkoxylation, Ag+ is found to be essentially innocent with
regard to the mechanism of the catalytic process itself. This is
thought to be valid for many reaction types, including those for
which the simultaneous presence of silver and gold components
was previously (erroneously) suggested to be crucial.4 Some
reactions that are separately catalyzed either by silver or by gold
are beyond the scope of this conclusion (for those reactions a
“true” silver effect associated with direct participation of silver
in the catalytic process would indeed take place).22
In addition to the formation of G, a silver effect may be
associated with an incomplete eq 1 or reactivation of a gold
catalyst by silver from halide poisoning. Whatever reason
applies, the chemical sense of a silver effect is the same: a
change (decrease or increase) in the concentration of nonsilver
catalytic cycle participants. Therefore, a gold catalysis
practitioner should not think of silver as a necessary component
of the catalytic cycle but rather must take care of speciation of
the catalytic system to ensure the maximum concentration of
catalytic cycle participants.
D. Nature 2007, 446, 395−403. (p) Furstner, A.; Davies, P. W. Angew.
̈
́
́
Chem., Int. Ed. 2007, 46, 3410−3449. (q) Jimenez-Nunez, E.;
̃
Echavarren, A. M. Chem. Commun. 2007, 333−346. (r) Hashmi, A.
S. K. Chem. Rev. 2007, 107, 3180−3211. (s) Hashmi, A. S. K.;
Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896−7936.
́
(2) Weber, D.; Gagne, M. R. Org. Lett. 2009, 11, 4962−4965.
(3) Examples of Au−Ag complexes with a bridging carbon:
(a) Contel, M.; Garrido, J.; Gimeno, M. C.; Jones, P. G.; Laguna,
A.; Laguna, M. Organometallics 1996, 15, 4939−4943. (b) Contel, M.;
Jimen
Trans. 1994, 2515−2518. (c) Fernan
A.; Lagunas, M. C.; Lopez-de-Luzuriaga, J. M.; Monge, M.; Montiel,
M.; Olmos, M. E.; Puelles, R. C.; Sanchez-Forcada, E. Chem. - Eur. J.
2009, 15, 6222−6233. (d) Fernandez, E. J.; Laguna, A.; Lopez-de-
Luzuriaga, J. M.; Montiel, M.; Olmos, M. E.; Perez, J.; Puelles, R. C.
Organometallics 2006, 25, 4307−4315. (e) Ruiz, J.; Riera, V.; Vivanco,
M.; García-Granda, S.; García-Fernandez, A. Organometallics 1992, 11,
4077−4082. (f) Vicente, J.; Chicote, M. T.; Alvarez-Falcon, M. M.;
́
ez, J.; Jones, P. G.; Laguna, A.; Laguna, M. J. Chem. Soc., Dalton
́
dez, E. J.; Hardacre, C.; Laguna,
́
́
́
́
́
́
́
Jones, P. G. Organometallics 2005, 24, 4666−4675. (g) Xie, Z.-L.; Wei,
Q.-H.; Zhang, L.-Y.; Chen, Z.-N. Inorg. Chem. Commun. 2007, 10,
1206−1209. (h) Mazhar-Ul-Haque; Horne, W.; Abu-Salah, O. M. J.
Crystallogr. Spectrosc. Res. 1992, 22, 421−425.
(4) Wang, D.; Cai, R.; Sharma, S.; Jirak, J.; Thummanapelli, S. K.;
Akhmedov, N. G.; Zhang, H.; Liu, X.; Petersen, J. L.; Shi, X. J. Am.
Chem. Soc. 2012, 134, 9012−9019.
(5) Homs, A.; Escofet, I.; Echavarren, A. M. Org. Lett. 2013, 15,
5782−5785.
(6) Kumar, M.; Hammond, G. B.; Xu, B. Org. Lett. 2014, 16, 3452−
3455.
(7) For activation of gold hydroxo complexes with a Brønsted acid,
́
see: Gaillard, S.; Bosson, J.; Ramon, R. S.; Nun, P.; Slawin, A. M. Z.;
Nolan, S. P. Chem. - Eur. J. 2010, 16, 13729−13740.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
(8) For anion exchange of LAuCl with an alkali-metal salt, see:
S
(a) Furstner, A.; Alcarazo, M.; Goddard, R.; Lehmann, C. W. Angew.
̈
Chem., Int. Ed. 2008, 47, 3210−3214. (b) Kleinbeck, F.; Toste, F. D. J.
Am. Chem. Soc. 2009, 131, 9178−9179. (c) Lau, V. M.; Gorin, C. F.;
6003
ACS Catal. 2015, 5, 5994−6004