D
C. A. Quesnelle et al.
Letter
Synlett
Table 2 Effect of 2,3-Succinamide Configuration on Notch 1/3 Inhibi-
tory Potency
References and Notes
(1) Whittaker, M.; Floyd, C. D.; Brown, P.; Gearing, A. J. H. Chem.
Rev. 1999, 99, 2735.
Compd
Configuration
Notch IC50 (nM)
Notch 3
(2) (a) Chukwujekwu, J. C.; de Kock, C. A.; Smith, P. J.; van Heerden,
F. R.; van Staden, J. Planta Med. 2012, 78, 1857. (b) Ishihara, J.;
Tokuda, O.; Shiraishi, K.; Nishino, Y.; Takahashi, K.; Hatakeyama,
S. Heterocycles 2010, 80, 1067. (c) Huang, Y.-L.; Chen, C.-C.; Hsu,
F.-L.; Chen, C.-F. J. Nat. Prod. 1998, 61, 1194. (d) Brown, K.;
Devlin, J. A.; Robins, D. J. Phytochemistry 1984, 23, 457.
(3) Gavai, A. V.; Quesnelle, C.; Norris, D.; Han, W.-C.; Gill, P.; Shan,
W.; Balog, A.; Chen, K.; Tebben, A.; Rampulla, R.; Wu, D.-R.;
Zhang, Y.; Mathur, A.; White, R.; Rose, A.; Wang, H.; Yang, Z.;
Ranasinghe, A.; D’Arienzo, C.; Guarino, V.; Xiao, L.; Su, C.;
Everlof, G.; Arora, V.; Shen, D. R.; Cvijic, M. E.; Menard, K.; Wen,
M.-L.; Meredith, J.; Trainor, G.; Lombardo, L. J.; Olson, R.; Baran,
P. S.; Hunt, J. T.; Vite, G. D.; Fischer, B. S.; Westhouse, R. A.; Lee,
F. Y. ACS Med. Chem. Lett. 2015, 6, 523.
Notch 1
18
19
20
21
22
23
24
25
S,R,S
S,R,R
S,S,S
S,S,R
R,R,S
R,R,R
R,S,S
R,S,R
2
3
1893
>5000
57
1679
>5000
73
646
537
>5000
271
>5000
400
>5000
>5000
(4) Decicco, C. P.; Nelson, D. J.; Corbett, R. L.; Dreabit, J. C. J. Org.
Chem. 1995, 60, 4782.
Me
CF3
O
N
(5) (a) McClure, K. F.; Axt, M. Z. Bioorg. Med. Chem. Lett. 1998, 8,
143. (b) Fujisawa, T.; Igeta, K.; Odake, S.; Morita, Y.; Yasuda, J.;
Morikawa, T. Bioorg. Med. Chem. 2002, 10, 2569.
(6) Pratt, L. M.; Bowles, S. A.; Courtney, S. F.; Hidden, C.; Lewis, C.
N.; Martin, F. M.; Todd, R. S. Synlett 1998, 531.
O
NH3
S
N
a, b, c
Ot-Bu
R
HO
S
O
CF3
(7) Beckett, R. P.; Crimmin, M. J.; Davis, M. H.; Spavold, Z. Synlett
1993, 137.
(8) (a) DeMartino, M. P.; Chen, K.; Baran, P. S. J. Am. Chem. Soc.
2008, 130, 11546. See also: (b) Csákÿ, A. G.; Plumet, J. Chem. Soc.
Rev. 2001, 30, 313. (c) Guo, F.; Clift, M. D.; Thomson, R. J. Eur. J.
Org. Chem. 2012, 4881.
15
17
CF3
Me
O
O
N
R
NH2
N
S
S
H
N
O
(9) Five separate vessels, all appropriately dried, were set up as fol-
lows:
CF3
1) a flask fitted with a stir bar to be used to prepare LDA, purged
with N2;
18
2) a flask containing bis(2-ethylhexanoyloxy)copper, placed
under vacuum for several hours to remove oxygen, then purged
with N2;
3) a flask of appropriate size (this will be the main reaction
flask, the larger the better for efficient heat transfer later in the
procedure was found to be ideal) equipped with a stir bar was
charged with LiCl, placed under vacuum then dried with a heat
gun until all traces of water were removed, then purged with
N2;
4) a flask charged with the amide starting material, purged with
N2;
5) a flask equipped with a stir bar was charged with the ester
starting material, purged with N2.
Scheme 3 Synthesis of BMS-906024. Reagents and conditions: (a) TBTU,
Et3N, DMF (89%); (b) TFA, CH2Cl2 (75%); (c) NH4Cl, EDC, HOBt, Et3N,
DMF (79%).
In conclusion, the oxidative intermolecular enolate het-
erocoupling reaction and subsequent epimerization proto-
col afforded a rapid and efficient entry to enantio- and dia-
stereomerically pure anti-2,3-disubstituted succinic acid
esters in acceptable yields. Differential protection of these
succinic acid esters provided access to each individual dia-
stereomer. This synthetic methodology led to rapid SAR
generation and the identification of BMS-906024 as a po-
tent pan-Notch inhibitor currently undergoing phase 1 clin-
ical evaluation for the treatment of cancer.
Procedure
A 0.5 M solution of LDA was prepared by the addition of a solu-
tion of 2.5 M n-BuLi in hexanes (14.7 mL, 36.8 mmol) to a cold
(–78 °C) solution of diisopropylamine (5.3 mL, 37.2 mmol) in
THF (59 mL) under N2. The solution was stirred at 0 °C for 15
min.
A solution of (S)-4-isopropyl-3-(5,5,5-trifluoropenta-
Acknowledgment
noyl)oxazolidin-2-one (2.45 g, 9.2 mmol) in toluene (15.3 mL)
was added with stirring to dry LiCl (1.96 g, 46.2 mmol). The
mixture was cooled to –78 °C, and the freshly prepared 0.5 M
solution of LDA (21.0 mL, 10.5 mmol) was added. The reaction
mixture was stirred at –78 °C for 10 min, at 0 °C for 10 min, and
cooled to –78 °C. Meanwhile, the freshly prepared 0.5 M solu-
tion of LDA (37.0 mL, 18.5 mmol) was added to a cold (–78 °C)
solution of tert-butyl 5,5,5-trifluoropentanoate (3.41 g, 16.1
mmol) in toluene (15.3 mL). After 25 min of stirring at –78 °C,
We thank the Department of Discovery Synthesis for resynthesis and
purification support. We also acknowledge Janet Caceres Cortes, the
Departments of Lead Discovery Profiling and Discovery Analytical
Sciences for DMPK assays and compound characterization efforts.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–E