Organic Letters
Letter
preferentially to 1,4-disubstitued triazoles.15 In this case, the
cyclophane 30 could potentially arise from intramolecular
formation of the 1,4-disubstituted triazole, but is presumably
disfavored due to ring strain as well as the low population of cis-
t allylic azide. Accordingly, it is likely that intermolecular
reaction of the terminal azide occurs affording the intermediate
shown, which is then followed by equilibration to terminal
azide and subsequent cycloaddition/macrocyclization.
The oxazepine 34 and macrocylic triazole 35 were obtained
from the equilibrating mixture of homologous azides 33 in 81%
and 78% yields, respectively (Scheme 4). However, attempts to
obtain the ring systems containing an additional carbon
intervening between the reacting groups were not successful.
(d) Sletten, E. M.; Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 666.
(e) Mohan, A.; Sankararaman, S. Isr. J. Chem. 2012, 52, 92.
(2) For Cu(I)-catalyzed AAC, see: (a) Tornøe, C. W.; Christensen,
C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (b) Rostovtsev, V. V.;
Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002,
41, 2596. (c) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.;
Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005,
127, 210. (d) Angell, Y.; Burgess, K. J. Org. Chem. 2005, 70, 9595.
(e) Chandrasekhar, S.; Rao, C. L.; Nagesh, C.; Reddy, C. R.; Sridhar,
B. Tetrahedron Lett. 2007, 48, 5869.
(3) For Ru(II)-catalyzed AAC, see: (a) Zhang, L.; Chen, X.; Xue, P.;
Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. J.
Am. Chem. Soc. 2005, 127, 15998. (b) Boren, B. C.; Narayan, S.;
Rasmussen, L. K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V. V. J.
Am. Chem. Soc. 2008, 130, 8923. (c) Zhang, J.; Kemmink, J.; Rijkers,
D. T.; Liskamp, R. M. Org. Lett. 2011, 13, 3438.
(4) For other ACC catalysts, see: (a) McNulty, J.; Keskar, K.;
Vemula, R. Chem.Eur. J. 2011, 17, 14727. (b) McNulty, J.; Keskar,
K. Eur. J. Org. Chem. 2012, 2012, 5462. (c) Kwok, S. W.; Fotsing, J. R.;
Fraser, R. J.; Rodionov, V. O.; Fokin, V. V. Org. Lett. 2010, 12, 4217.
(5) For related examples using thermal conditions, see: (a) Li, R.;
Jansen, D. J.; Datta, A. Org. Biomol. Chem. 2009, 7, 1921. (b) Declerck,
V.; Toupet, L.; Martinez, J.; Lamaty, F. J. Org. Chem. 2009, 74, 2004.
(6) (a) Gagneux, A.; Winstein, S.; Young, W. G. J. Am. Chem. Soc.
1960, 82, 5956. (b) VanderWerf, C. A.; Heasley, V. L. J. Org. Chem.
1966, 31, 3534.
Scheme 4
(7) (a) Feldman, A. K.; Colasson, B.; Sharpless, K. B.; Fokin, V. V. J.
Am. Chem. Soc. 2005, 127, 13444. (b) Mishra, A.; Hutait, S.; Bhowmik,
S.; Rastogi, N.; Roy, R.; Batra, S. Synthesis 2010, 2731.
(8) For recent examples of allylic azides in synthesis, see: (a) Cardillo,
G.; Fabbroni, S.; Gentilucci, L.; Perciaccante, R.; Piccinelli, F.;
Tolomelli, A. Org. Lett. 2005, 7, 533. (b) Gagnon, D.; Lauzon, S.;
Godbout, C.; Spino, C. Org. Lett. 2005, 7, 4769. (c) Takasu, H.; Tsuji,
The triazoles obtained in this study represent interesting
classes of heterocyclic compounds that contain an alkene
moiety for further manipulation. Although the stereoselectiv-
ities obtained in this work were slight, the ability to separate
products and select between several equilibrating azides by
modification of reaction conditions is noteworthy and suggests
future applications for such azides in chemical synthesis.
́
Y.; Sajiki, H.; Hitota, K. Tetrahedron 2005, 61, 11027. (d) Sa, M. M.;
Ramos, M. D.; Fernandes, L. Tetrahedron 2006, 62, 11652. (e) Klepper,
F.; Jahn, E.-M.; Hickmann, V.; Craell, T. Angew. Chem., Int. Ed. 2007,
46, 2325. (f) Lauson, S.; Tremblay, F.; Gagnnon, D.; Godbout, C.;
̀
Chabot, C.; Mercier-Shanks, C.; Perreault, S.; DeSeve, H.; Spino, C. J.
Org. Chem. 2008, 73, 6239. (g) Chang, Y.-K.; Lo, H.-J.; Yan, T.-H. Org.
Lett. 2009, 11, 4278. (h) Cakmak, M.; Mayer, P.; Trauner, D. Nat.
Chem 2011, 3, 543. (i) Craig, D.; Harvey, J. W.; O’Brien, A. G.; White,
A. J. P. Org. Biomol. Chem. 2011, 9, 7057.
ASSOCIATED CONTENT
* Supporting Information
■
S
́
(9) (a) Liu, R.; Gutierrez, O.; Tantillo, D. J.; Aube, J. J. Am. Chem.
Soc. 2012, 134, 6528. (b) Liu, R. Ph.D. Dissertation, University of
Kansas, Lawrence, KS, 2012.
(10) Ellison, A.; Boyer, R.; Hoogestraat, P.; Bell, M. Tetrahedron lett.
2013, 54, 6005.
Experimental procedures, full spectroscopic data, and NMR
spectra for all new compounds; X-ray data for structures of
compounds 18a, 18b, 27a, 28a, and 29a. This material is
(11) We estimate the cis-t isomer to be formed in 0−5% yield,
AUTHOR INFORMATION
Corresponding Author
although it is generally hard to quantify due to overlapping signals in
■
1
the H NMR.
(12) For 1-methyl-1-phenylcyclohexane, the chair conformer with an
axial phenyl group is favored by 0.32 kcal/mol over the alternative
chair: Eliel, E. L.; Manoharan, M. J. Org. Chem. 1981, 46, 1959.
(13) Buchanan, G. W. Can. J. Chem. 1982, 60, 2908.
Notes
The authors declare no competing financial interest.
(14) Seeman, J. I. Chem. Rev. 1983, 83, 83−134.
(15) (a) Angell, Y.; Burgess, K. J. Org. Chem. 2005, 70, 9595.
(b) Chandrasekhar, S.; Rao, C. L.; Nagesh, C.; Reddy, C. R.; Sridhar,
B. Tetrahedron Lett. 2007, 48, 5869.
ACKNOWLEDGMENTS
■
We are grateful to the National Institute of General Medical
Sciences P41 GM089164 for financial support. We thank
Patrick Porubsky for HRMS, Victor Day for X-ray crystallog-
raphy (the diffractometer and software used in this study were
purchased through NSF−MRI Grant No. CHE-0923449), and
Gurpreet Singh and Digamber Rane for helpful suggestions (all
at the University of Kansas).
REFERENCES
■
(1) For recent reviews, see: (a) Meldal, M.; Tornøe, C. W. Chem.
Rev. 2008, 108, 2952. (b) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev.
2010, 39, 1302. (c) Majumdar, K. C.; Ray, K. Synthesis 2011, 3767.
1847
dx.doi.org/10.1021/ol500011f | Org. Lett. 2014, 16, 1844−1847