436
D. Egron et al.
LETTER
In conclusion, we consider this intramolecular nucleo-
philic cyclization, as a useful straightforward way to ob-
tain chiral C-furanoside 8 substituted at C-2, C-3, C-5
with the 4R,6S,7R configuration. This C-furanoside after
deprotection should be a useful synthon for natural prod-
uct synthesis.
OTBDPS
HO
I
a
TBDPSO
O
7
CO2Me
OH
O -
9
8
CO2Me
Scheme 2
Acknowledgement
The mechanism that we propose for the formation of the
C-furanoside 8 is shown in the Scheme 2. After formation
of derivative 7 and under the basic conditions of the Wit-
tig reaction, alcoholate 9 was generated in situ followed
by intramolecular nucleophilic cyclization on the iodo
leaving group to afford the C-furanoside 8. We have con-
firmed the structure of this compound 8 by a NMR studies
in 1D (1H and 13C) and 2D (HQMC and HMBC) and ele-
mental analysis.
We wish to thank the Direction des Recherches Etudes et Tech-
niques for financial support (grant N° 94135/DRET) and the Mini-
stère de l'Education Nationale, de l’Enseignement Supérieure et de
la Recherche for financial support of one of us (AR).
References and Notes
(1) Westley, J. W., Polyether Antibiotics : Naturally Occurring
Acid Ionophores, vols. I and II Marcel Dekker, New York,
1982
Finally, we have determined and confirmed the 4R,6S,7R
configuration of compound 8 (Figure 1 and Table 1) by
steady-state NOE difference spectroscopy (DNOES) ex-
periments, which have previously been employed by our
group.17 Concerning the relative configuration of the
chains situated at C-7 and C-4, the irradiation of 7-H (to
3.94 ppm) induced a NOE of 1.0% on 4-H (to 4.74 ppm).
This result is in agreement with a relative cis configura-
tion between these two chains. The irradiation of 6-H (to
4.44 ppm) induced a NOE of 0.4% on 8-H (to 3.59 ppm)
and of 3.9% on 5’-H (to 1.87 ppm), and the irradiation of
3-H (to 6.92 ppm) also induced a NOE of 0.1% on 5’-H (to
1.87 ppm). These observations allowed us to confirm the
relative trans configuration of the hydroxyl group and the
chains situated in C-7 and C-4 positions.
(2) a) Cavé, A.; Cortes, D.; Figadère, B.; Hocquemiller, R.;
Laprévote, O.; Laurens, A.; Leboeuf, M. Phytochemical
Potential of Tropical Plants; Recent Advances in Phytochemi-
stry, 27, Bownum, K. R.; Romeo, J.; Stafford H. H. A. Eds.,
Plenum Press, New-York, 1993; b) Postema, M. H. D. Tetra-
hedron 1992, 48, 8545
(3) Harmange, J. C.; Figadère, B. Tetrahedron: Asymmetry 1993,
4, 1711
(4) Boivin, T. L. B. Tetrahedron 1987, 43, 3309
(5) See for example a) Choi, S. S.; Myerscough, P. M.; Fairbanks,
A. J.; Skead, B. M.; Bichard, C. J. F.; Mantell, S. J.; Son, J. C.;
Fleet, G. W. J.; Sanders, J.; Brown, D. J. Chem. Soc., Perkin
Trans. 1 1992, 3023.
(6) Demopoulos, C. A.; Pinckard, R. N.; Hanahan, D.J. J. Biol.
Chem. 1979, 254, 9355;
(7) Benveniste, J.; Tence, M.; Varenne P.; Bidault, J.; Boullet, C.;
Polonsky, J. C. R. Acad. Sci. 1979, 289D, 1037
(8) Kobayashi, S; Sato, M.; Eguchi, Y; Ohno, M. Tetrahedron
Lett. 1992, 33, 1081
(9) For example; Wilson, P.; Shan, W.; Mootoo, D. R. J. Carbo-
hydr. Chem. 1994, 13, 133.
(10) a) Nicolaou, K. C.; Pavia, M. R.; Seitz, S. P. Tetrahedron Lett.
1979, 2327; b) Sun, K. M.; Fraser-Reid, B. Can. J. Chem.
1980, 58, 2732.
(11) a) Kochetkov, N. K.; Dmitriev, B. A. Tetrahedron Lett. 1965,
21, 803; b) Hanessian, S.; Ogawa, T.; Guindon, Y. Carbohydr.
Res. 1974, 38, C-12; c) Ohrui, H.; Jones, G. H.; Moffatt, J. G.;
Maddox, M. L.; Christensen, A. T.; Byram, S. K. J. Am.
Chem. Soc. 1975, 97, 4602.
(12) a) Roland, A.; Durand, T.; Rondot, B.; Vidal, J.P.; Rossi, J.C.
Bull. Soc. Chim. Fr. 1996, 113, 1149; b) Guy, A; Durand, T;
Roland, A; Cormenier, E; Rossi, J.C; Tetrahedron Lett. 1998,
39, 6181
(13) Barton, D. H. R.; Mc Combie, S. W. J. Chem. Soc., Perkin
Trans. 1 1975, 1574.
(14) Rondot, B.; Durand, T.; Rossi, J.C.; Rollin, P. Carbohydr.
Res. 1994, 261, 149.
3.9%
0.12%
H3
H3CO2C
H2
H5'
0.4%
H6
H5
OH
O
(15) Compound 7: To a solution of diol 6 (564 mg, 1.1 mmol) in
dry THF (15 ml) was added methoxycarbonylmethylene
triphenylphosphorane (730 mg, 2.2 mmol). The reaction mix-
ture was stirred for 11 h at room temperature. Concentration
under reduced pressure followed by purification by flash
chromatography (Silica gel, Hex-EtOAc 8:2) gave 7 (468 mg,
75%)
H4
8
OTBDPS
1.0%
H7
Figure 1
1H-NMR (360 MHz, CDCl3) d : 7.62-7.6 (m, 4H, Ph), 7.37-
7.46 (m, 6H, Ph), 6.87-6.92 (dd, J=15.8 and 4.7 Hz, 1H, H-3),
6.07-6.11 (dd, J=1.4 Hz, 1H, H-2), 4.54-4.57 (m, 2H, H-4),
Synlett 1999, No. 4, 435–437 ISSN 0936-5214 © Thieme Stuttgart · New York