[8+2] Formal Cycloaddition Reaction of Tropones with Azlactones
(Table 4, Entry 5) and a higher reaction rate when a cobase
(K2CO3) was added. In the case of alanine, we were able to
separate the diastereomeric mixture; therefore, this method-
Acknowledgments
Financial support of this work by the Ministerio de Educación y
ology allows the isolation of optically pure dipeptides (9Ba Ciencia (MEC) (grant number CTQ-2012-12168) and Comunidad
Autónoma de Madrid (programa AVANCAT, grant number
CS2009/PPQ-1634) is gratefully acknowledged. J. A. is grateful for
a Ramón y Cajal contract from the Spanish Government, and R.
A. thanks the Mexican Consejo Nacional de Ciencia y Tecnología
(CONACYT) for a postdoctoral fellowship. A. P. is grateful to the
Spanish Government for a Juan de la Cierva contract. F. Y. thanks
CONACYT and the Dirección General de Apoyo al Personal
and 9ЈBa; Table 4, Entry 4). Other amino acids such as
phenylalanine or valine provided similar results although
with a slightly lower yield for the bulkier valine derivative
(Table 4, Entries 7 and 8).
Conclusions
Académico
– Universidad Nacional Autónoma de México
(DGAPA-UNAM) for a sabbatical fellowship.
We have found a new approach for the synthesis of a
variety of dihydro-2H-cyclohepta[b]furan derivatives by re-
action of tropones and azlactones under Brønsted acid ca-
talysis. They can easily be opened with nucleophiles to form
α,α-disubstituted amino acids (or dipeptides) bearing seven-
membered rings at the quaternary carbon atoms. The use of
homochiral amino acids as nucleophiles provides separable
mixtures of enantiomerically pure α-(2-tropyl), α-alkyl α-
amino acid dipeptides.
[1] For reviews on the chemistry of troponoids, see: a) F. Pietra,
Chem. Rev. 1973, 73, 293; b) S. Ito, Y. Fujise, in: Topics in
Nonbenzenoid Aromatic Chemistry (Eds.: T. Nozoe, R. Breslow,
K. Hafner, S. Ito, I. Murata), Hirokawa, Tokyo, 1977, vol. 2,
p. 91; c) F. Pietra, Acc. Chem. Res. 1979, 12, 132; d) D. Lloyd,
in: Nonbenzenoid Conjugated Carbocyclic Compounds, Elsevier,
Amsterdam, 1984; pp 89–125, p. 126–132; e) T. Asao, M. Oda,
in: Methoden der Organischen Chemie (Houben-Weyl) (Ed.: M.
Regitz), Thieme, Stuttgart, Germany, 1985, vol. 5/2c, p. 710; f)
J. H. Rigby, in: Studies in Natural Products Chemistry, Stereose-
lective Synthesis Elsevier, Amsterdam, 1988, part A, vol. 1, p.
545.
Experimental Section
[2] a) A. E. Greene, M. A. Teixeria, E. Barreiro, A. Cruz, P.
Crabbe, J. Org. Chem. 1982, 47, 2553; b) B. M. Trost, P. R.
Seoane, J. Am. Chem. Soc. 1987, 109, 615; c) R. L. Funk, G. L.
Bolton, J. Org. Chem. 1987, 52, 3174; d) K. S. Feldman, J. H.
Come, B. J. Kosmider, P. M. Smith, D. P. Rotella, M.-J. Wu, J.
Org. Chem. 1989, 54, 92; e) J. H. Rigby, H. S. Ateeq, J. Am.
Chem. Soc. 1990, 112, 6442; f) K. S. Feldman, M.-J. Wu, D. P.
Rotella, J. Am. Chem. Soc. 1989, 111, 6457; g) T. Graening, V.
Bette, J. Neudorfl, J. Lex, H.-G. Schmalz, Org. Lett. 2005, 7,
4317.
[3] a) L. Isakovic, J. A. Ashenhurst, J. L. Gleason, Org. Lett. 2001,
3, 4189; b) P. Li, H. Yamamoto, J. Am. Chem. Soc. 2009, 131,
16628.
[4] See, for example: a) Y. Coquerel, J. P. Deprés, A. E. Greene, J.
Philouze, J. Organomet. Chem. 2002, 659, 176; b) J. H. Rigby,
V. Sainte Claire, Synth. Commun. 2012, 25, 4115.
General Methods: NMR spectra were acquired with a Bruker 300
spectrometer at 300 and 75 MHz for 1H and 13C, respectively.
Chemical shifts are reported in ppm relative to residual solvent
signals (CHCl3, δ = 7.26 ppm for 1H NMR, CDCl3, δ = 77.0 ppm).
13C NMR spectra were acquired in broadband-decoupled mode.
Analytical thin layer chromatography (TLC) was performed by
using precoated aluminium-backed plates (Merck Kieselgel 60
F254), and the plates were visualized by ultraviolet irradiation or
KMnO4 dip. Purification of reaction products was performed by
flash chromatography (FC) with silica gel Merck-60 or Fluorisil®
100–200 mesh. Materials: Commercially available tropones 1A and
1B and chiral phosphoric acids were used without further purifica-
tion. Azlactones 2a, 2c–2f, and 2h–2j were synthesized according
to literature procedures.[19]
[5] a) K. Kumar, A. Kapur, M. P. S. Ishar, Org. Lett. 2000, 2, 787;
b) M. Oda, A. Sugiyama, R. Takeuchi, Y. Fujiwara, R. Miya-
take, T. Abe, S. Kuroda, Eur. J. Org. Chem. 2012, 2231, and
references cited therein.
[6] a) B. M. Trost, P. J. McDougall, O. Hartmann, P. T. Walhen, J.
Am. Chem. Soc. 2008, 130, 14960; b) Y. Du, J. Feng, X. Lu,
Org. Lett. 2005, 7, 1987.
[7] In a similar way, ketene aminals, formed in reactions of hetero-
cyclic carbenes with conjugated aldehydes, react with tropones
to yield bicyclic δ-lactones, presumably by an [8+3] annulation
pathway, see: V. Nair, M. Poonoth, S. Vellalath, E. Suresh, R.
Thirumalai, J. Org. Chem. 2006, 71, 8964.
[8] a) K. G. Jastrzabek, R. Subiros-Funosas, F. Albericio, B. Kole-
sinska, Z. J. Kaminski, J. Org. Chem. 2011, 76, 4506; b) A. R.
Katritzky, E. Todadze, P. Angrish, B. Draghici, J. Org. Chem.
2007, 72, 5794.
[9] For recent reviews of α,α-disubstituted α-amino acids, see: a)
Y. Ohfune, T. Shinada, Eur. J. Org. Chem. 2005, 5127; b) M.
Tanaka, Chem. Pharm. Bull. 2007, 55, 349; c) H. Vogt, S. Bräse,
Org. Biomol. Chem. 2007, 5, 406; for other related reviews, see:
d) C. Nájera, J. M. Sansano, Chem. Rev. 2007, 107, 4584; e) K.
Undheim, Amino Acids 2008, 34, 357; f) J. Clayden, M. Don-
nard, J. Lefranc, D. J. Tetlow, Chem. Commun. 2011, 47, 4624.
[10] For general reviews concerning azlactones, see: a) A.-N. R.
Alba, R. Rios, Chem. Asian J. 2011, 6, 720; b) J. S. Fisk, R. A.
Mosey, J. J. Tepe, Chem. Soc. Rev. 2007, 36, 1432; c) R. A. Mo-
General Procedure for the Synthesis of 3Aa–3Aj and 3Ba–3Bh: To
an ordinary vial charged with azlactone 2 (012 mmol) was added
the corresponding tropone 1A or 1B (0.1 mmol) and TFA (5 mol-
%) in p-xylene (0.3 mL) at room temp. Once the reaction was fin-
ished (as monitored by 1H NMR spectroscopy, usually 5–12 h), the
solvent was eliminated under reduced pressure, and the residue was
directly collected by filtration to afford the pure products.
rac-N-[(3S,3aS)-8-Chloro-3-methyl-2-oxo-3,3a-dihydro-2H-cyclo-
hepta[b]furan-3-yl]benzamide (3Ba): The product was obtained as a
unique diastereoisomer by following the standard procedure with
tropone 1B and azlactone 2a to afford a white solid (97% yield),
m.p. 217–219 °C. 1H NMR (300 MHz, [D6]acetone): δ = 8.52 (br
s, 1 H), 7.92 (dd, J = 3.1, 1.1 Hz, 2 H), 7.59–7.55 (m, 1 H), 7.49–
7.46 (m, 2 H), 6.36 (d, J = 1.8 Hz, 2 H), 6.26–6.22 (m, 1 H), 5.64
(dd, J = 3.9, 2.2 Hz, 1 H), 3.64–3.63 (m. 1 H), 1.83 (s, 3 H) ppm.
13C NMR (75 MHz, [D6]acetone): δ = 174.4, 167.8, 142.7, 133.5,
132.9, 129.5, 129.2, 128.4, 128.1, 128.0, 121.7, 106.4, 59.7, 46.2,
20.3 ppm. HRMS (ESI+): calcd. for C17H14ClNO3 [M + H]+
315.0713; found 315.0721.
Supporting Information (see footnote on the first page of this arti-
cle): Characterization data for all compounds. Copies of the 1H
and 13C NMR spectra for the final products.
Eur. J. Org. Chem. 2014, 1395–1400
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
1399