Journal of the American Chemical Society
Communication
Under the conditions utilized for labeling with [18F]KF,
substrates prone to base induced epimerization frequently
undergo loss of stereochemical information.15 Given the reduced
basicity of 10, we expected that the integrity of epimerizable
stereocenters within substrates could be maintained during
labeling. We selected 4-fluorothreonine, a rare example of a
fluorine-containing natural product, as a substrate bearing a
potentially epimerizable stereocenter. Prepared as a mixture of
enantiomerically pure diastereomers (4:1 syn:anti), epoxide 24
was subjected to 10, affording the desired product in 60% RCY
(Figure 3C, 25). It was also observed that the matched catalyst
preferentially reacted with the desired syn-diastereomer produc-
ing 25 as a single diastereomer (>99:1).
Having shown the utility of this method for the manual
preparation of known tracers, we next sought to demonstrate the
feasibility of a remote, semiautomated radiosynthesis of
[18F]FMISO. Utilizing a remote-controlled microwave cavity
integrated into an automated liquid handler, 12.3 mCi
[18F]FMISO was isolated in 10.6% nondecay corrected RCY
(from activity delivered, 37 min total synthesis time) following
semipreparative-HPLC. The isolated tracer possessed a Co-
content of 5 ppb (ICP-MS) and specific activity of 3.7 Ci/umol
(EOB), indicating that this method is capable of providing a PET
tracer useful for in vivo studies.16
In conclusion, we have demonstrated that commercially
available catalyst 2 and dimeric catalyst 10 are capable of
radiolabeling a diverse array of complex epoxides with high levels
of stereocontrol and functional group compatibility under mild
conditions. The protocol makes use of an air-stable catalyst and is
operationally simple to carry out. We anticipate that it will
facilitate the synthesis of novel PET tracers and also allow
investigators to better understand the relationship between
stereochemistry and radiotracer imaging properties. Further-
more, the utility of 10 and other transition metal fluorides for
mild and selective radiofluorination is a topic of ongoing research
in our laboratory.
Fellow, Eli Lilly Grantee, an Amgen Young Investigator, and a
Roche Early Excellence in Chemistry Awardee.
REFERENCES
■
(1) Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008,
108, 1501−1516.
(2) Matthews, P. M.; Rabiner, E. A.; Passchier, J.; Gunn, R. N. Br. J.
Clin. Pharmacol. 2012, 73, 175−186.
(3) Phelps, M. E. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 9226−9233.
(4) Zhu, L.; Ploessl, K.; Kung, H. F. Science 2013, 342, 429−430.
(5) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470−477.
(6) Cai, L.; Lu, S.; Pike, V. W. Eur. J. Org. Chem. 2008, 2853−2873.
(7) Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem., Int. Ed.
2008, 47, 8998−9033.
(8) Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.; Boursalian,
G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T. Science 2011, 334,
639−642.
(9) Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134,
17456−17458.
(10) Gao, Z.; Lim, Y. H.; Tredwell, M.; Li, L.; Verhoog, S.; Hopkinson,
M.; Kaluza, W.; Collier, T. L.; Passchier, J.; Huiban, M.; Gouverneur, V.
Angew. Chem., Int. Ed. 2012, 51, 6733−6737.
(11) Topczewski, J. J.; Tewson, T. J.; Nguyen, H. M. J. Am. Chem. Soc.
2011, 133, 19318−19321.
(12) Benedetto, E.; Tredwell, M.; Hollingworth, C.; Khotavivattana,
T.; Brown, J. M.; Gouverneur, V. Chem. Sci. 2013, 4, 89−96.
(13) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013,
52, 8214−8264.
(14) Okamura, N.; Furumoto, S.; Harada, R.; Tago, T.; Yoshikawa, T.;
Fodero-Tavoletti, M.; Mulligan, R. S.; Villemagne, V. L.; Akatsu, H.;
Yamamoto, T.; Arai, H.; Iwata, R.; Yanai, K.; Kudo, Y. J. Nucl. Med. 2013,
54, 1420−1427.
(15) Qu, W.; Zha, Z.; Ploessl, K.; Lieberman, B. P.; Zhu, L.; Wise, D. R.;
Thompson, C. B.; Kung, H. F. J. Am. Chem. Soc. 2011, 133, 1122−1133.
(16) Limpachayaporn, P.; Wagner, S.; Kopta, K.; Hermann, S.;
Schafers, M.; Haufe, G. J. Med. Chem. 2013, 56, 4509−4520.
(17) Gronroos, T.; Eskola, O.; Lehtio, K.; Minn, H.; Marjamaki, P.;
̈
̈
̈
Bergman, J.; Haaparanta, M.; Forsback, S.; Solin, O. J. Nucl. Med. 2001,
42, 1397−1404.
(18) Lee, S. T.; Scott, A. M. Semin. Nucl. Med. 2007, 37, 451−461.
(19) Podichetty, A. K.; Wagner, S.; Schroer, S.; Faust, A.; Schafers, M.;
Schober, O.; Kopka, K.; Haufe, G. J. Med. Chem. 2009, 52, 3484−3495.
(20) Schirrmacher, R.; Lucas, P.; Schirrmacher, E.; Wangler, B.;
Wangler, C. Tetrahedron Lett. 2011, 52, 1973−1976.
(21) Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc. 2010, 132, 3268−
̈
ASSOCIATED CONTENT
* Supporting Information
■
S
̈
Experimental procedures, additional reaction optimization and
spectroscopic data for all new compounds. This material is
̈
3269.
(22) Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc. 2011, 133, 16001−
16012.
AUTHOR INFORMATION
Corresponding Author
■
(23) Under radiolabeling conditions with low concentrations of [18F]
fluoride, it is unlikely that a [18F]Co(III)F(HF) species is the active
nucleophile as was proposed in our cold catalytic system. We therefore
describe this species as a [18F]Co(III)F; however, the exact structure is
unknown at this time. Furthermore, it is unclear if the OTs counterions
undergo additional exchange (e.g., with MeOH or H2O) during the
preparation of 10.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(24) To date, attempts at employing nonsymmetrical 1,2-disubstituted
epoxides have met with failure with both the mono- and dimeric catalyst
systems. See SI for further details.
(25) Our radiochemical yields are decay-corrected and based on
activity added to each substrate. In contrast, the published radiochemical
yields for 12, 15, 20, and 23 are based on initial activity delivered from a
cyclotron and total activity isolated following purification and dose
formulation.
Dr. Julia A. Kalow is acknowledged for helpful discussions. Drs.
Wenping Li and Eric Hostetler (Merck & Co., Inc., West Point
PA) are acknowledged for providing the facilities utilized for the
semiautomated synthesis of [18F]FMISO and assistance with
specific activity determinations. We thank Princeton University,
the National Science Foundation (CAREER-1148750), the
National Institute of Health (CA164490 and DK081342), and
the PA Health department for financial support. T.J.A.G. thanks
Bristol-Myers Squibb and Eli Lilly for graduate fellowships. This
material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No.
DGE-1148900 (R.F.L.). A.G.D. is an Alfred P. Sloan Foundation
(26) Bejot, R.; Kersemans, V.; Kelly, C.; Carroll, L.; King, R. C.;
Gouverneur, V. Nucl. Med. Biol. 2010, 37, 565−575.
5294
dx.doi.org/10.1021/ja5025645 | J. Am. Chem. Soc. 2014, 136, 5291−5294