10.1002/ejoc.201801318
European Journal of Organic Chemistry
10
Colorless liquid; Yield = 55 mg, 35%; Rf = 0.5 (8/2 hexane/EtOAc);
=
Dostie, M. Prévost, P. Mochirian, K. Tanveer, N. Andrella, A. Rostami,
G. Tambutet, Y. Guindon, J. Org. Chem. 2016, 81, 10769−10790; n) R.
X.-F. Ren, N. C. Chaudhuri, P. L. Paris, S. Rumney, E. T. Kool, J. Am.
Chem. Soc. 1996, 118, 7671–7678; o) N. C. Chaudhuri, R. X.-F. Ren,
Eric T. Kool, Synlett 1997, 4, 341–347.
+52.17° (c = 1.51, CH2Cl2); IR (ṽmax/cm−1) 3534, 2976, 2863, 1470, 1010;
1H NMR (400 MHz, CDCl3) δ 7.38–7.12 (m, 9H, ArH), 6.08–5.98 (m, 1H,
H-6), 5.13–5.10 (m, 1H, H-7), 4.96–4.92 (m, 1H, H-7’), 4.86 (d, J = 9.9 Hz,
1H, H-1), 4.61–4.53 (m, 2H, –CH2Ph), 4.20– 4.17 (m, 1H, H-4), 4.04 (dd,
J = 6.3, 2.8 Hz, 1H, H-3), 3.78–3.75 (m, 1H, H-5), 3.68–3.64 (m, 1H, H-
5’), 2.70 (td, J = 9.4, 6.5 Hz, 1H, H-2), 2.32 (s, 3H, –CH3), 2.15 (br s, 1H);
13C NMR (100 MHz, CDCl3) δ 138.15, 137.75, 136.64, 132.85, 129.11,
128.54, 127.85, 127.74, 126.68, 119.08, 84.64, 84.39, 82.93, 72.08,
[4]
a) H. Ledford, Nature 2010, 468, 608–609; b) J. H. Lee, Z. Li, A. Osawa,
Y. Kishi, J. Am. Chem. Soc. 2016, 138, 16248−16251; c) J. H. Lee, Y.
Kishi, J. Am. Chem. Soc. 2016, 138, 7178−7186; d) N. Lavanya, N.
Kiranmai, P. S. Mainkar, S. Chandrasekhar, Tetrahedron Lett. 2015, 56,
4283–4285.
63.69, 56.68, 21.29; HRMS calcd for
found 347.1620.
C
21H24NaO3 [M + Na]+ 347.1623,
[5]
[6]
C. W. A. Ende, M. E. Green, D. S. Johnson, G. W. Kauffman, C. J.
ƠQDonnell, N. C. Patel, M. Y. Pettersson, A. F. Stepan, C. M. Stiff, C.
Subramanyam, T. P. Tran, P. R. Verhoest, WO2014045156, 2014.
a) S. Grélaud, V. Desvergnes, Y. Landais, Org. Lett. 2016, 18, 1542−
1545; b) A. T. Parsons, J. S. Johnson, J. Am. Chem. Soc. 2009, 131,
3122–3123; c) O. Kubo, K. Yahata, T. Maegawa H. Fujioka, Chem.
Commun. 2011, 47, 9197–9199; d) O. Lavinda, V. T. Tran, K. A.
Woerpel, Org. Biomol. Chem. 2014, 12, 7083–7091; e) S. N. Chavre, H.
Choo, J. H. Cha, A. N. Pae, K. I. Choi, Y. S. Cho, Org. Lett. 2006, 8,
3617–3619; f) K. Kong, D. Romo, C. Lee, Angew. Chem. 2009, 121,
7538–7541; Angew. Chem. Int. Ed. 2009, 48, 7402–7405; g) A. Kreft, P.
G. Jones, D. B. Werz, Org. Lett. 2018, 20, 2059−2062; h) J. Kaschel, C.
D. Schmidt, M. Mumby, D. Kratzert, D. Stalke, D. B. Werz, Chem.
Commun. 2013, 49, 4403–4405.
Acknowledgements ((optional))
We thank the Department of Science and Technology, New
Delhi, India, for
a J. C. Bose National Fellowship (No.
SR/S2/JCB-26/2010) to Y. D. V., S. D., A. C. thanks the Council
of Scientific and Industrial Research, New Delhi.
Keywords: D-Mannitol • Prins reaction • C-furanosides •
Protecting groups • Glycosylation
[7]
a) C. Olier, M. Kaafarani, S. Gastaldi, M. P. Bertrand, Tetrahedron 2010,
66, 413–445; b) X. Han, G. R. Peh, P. E. Floreancig, Eur. J. Org. Chem.
2013, 1193–1208; c) B. V. S. Reddy, P. N. Nair, A. Antony, C. Lalli, R.
Grée, Eur. J. Org. Chem. 2017, 1805–1819; d) C. Díez-Poza, A.
Barbero, Eur. J. Org. Chem. 2017, 4651–4665.
[1]
a) E. L. Nazarenko, R. J. Crawford, E. P. Ivanova, Mar. Drugs 2011, 9,
1914–1954; b) A. Weintraub, Carbohydr. Res. 2003, 338, 2449−2457;
c) P. H. Seeberger, D. B. Werz, Nature 2007, 446, 1046–1051; d) T. M.
Gloster, D. J. Vocadlo, Nat. Chem. Biol. 2012, 8, 683–694; e) B. G.
Davis, Chem. Rev. 2002, 102, 579–601; f) C. R. Bertozzi, L. L.
Kiessling, Science 2001, 291, 2357–2364; g) M. A. Chaube, V. A.
Sarpe, S. Jana, S. S. Kulkarni, Org. Biomol. Chem. 2016, 14, 5595–
5598; h) A. Varki, Glycobiology 2017, 27, 3–49; i) M. Chen, M. Hu, D.
Wang, G. Wang, X. Zhu, D. Yan, J. Sun, Bioconjugate Chem. 2012, 23,
1189–1199; j) T. J. Boltje, T. Buskas, G.-J. Boons, Nat. Chem. 2009, 1,
611–622; k) S. R. Sanapala, S. S. Kulkarni, J. Am. Chem. Soc. 2016,
138, 4938−4947; l) L. Yang, J. Zhu , X.-J. Zheng, G. Tai, X.-S. Ye,
Chem. Eur. J. 2011, 17, 14518–14526; m) B. Lorenz, L. Á. Cienfuegos,
M. Oelkers, E. Kriemen, C. Brand, M. Stephan, E. Sunnick, D. Yüksel,
V. Kalsani, K. Kumar, D. B. Werz, A. Janshoff, J. Am. Chem. Soc. 2012,
134, 3326–3329.
[8]
[9]
P. Rajasekaran, G. P. Singh, M. Hassam, Y. D. Vankar, Chem. Eur. J.
2016, 22, 18383–18387.
P. Rajasekaran, Y. Mallikharjunarao, Y. D. Vankar, Synlett 2017, 28,
1346–1352.
[10] a) A. Trabocchi, S. L. Schreiber, Diversity‐Oriented Synthesis: Basics
and Applications in Organic Synthesis, Drug Discovery, and Chemical
Biology; Hoboken, New Jersey: Wiley, 2013; b) D. R. Spring, Org.
Biomol. Chem. 2003, 1, 3867–3870.
[11] a) S. Dubbu, Y. D. Vankar, Eur. J. Org. Chem. 2018, DOI:
10.1002/ejoc.201800705; b) S. Dubbu, A. K. Verma, K. Parasuraman,
Y. D. Vankar, Carbohydr. Res. 2018, 465, 29–34.
[12] S. Dubbu, Y. D. Vankar, Eur. J. Org. Chem. 2017, 5986–6002.
[13] S. Dubbu, A. Chennaiah, A. K. Verma, Y. D. Vankar, Carbohydr. Res.
2018, 468, 64–68.
[2]
a) H. A. Taha, M. R. Richards, T. L. Lowary, Chem. Rev. 2013, 113,
1851−1876; b) A. Lorente, J. Lamariano-Merketegi, F. Albericio, M.
Álvarez, Chem. Rev. 2013, 113, 4567−4610; c) B. Fraser-Reid, J. Lu, K.
N. Jayaprakash, J. C. Lópe, Tetrahedron:Asymmetry 2006, 17, 2449–
2463; d) M. Islam, G. Gayatri, S. Hotha, J. Org. Chem. 2015, 80, 7937−
7945; e) M. P. Bartetzko, F. Schuhmacher, H. S. Hahm, P. H.
Seeberger, F. Pfrengle, Org. Lett. 2015, 17, 4344−4347; f) Y. Wu, D.-C.
Xiong, S.-C. Chen, Y.-S. Wang, X.-S. Ye, Nat. Comm. 2017, 8, 14851;
g) I. Chlubnová, D. Filipp, V. Spiwok, H. Dvořáková, R. Daniellou, C.
Nugier-Chauvin, B. Králová, V. Ferrières, Org. Biomol. Chem. 2010, 8,
2092–2102; h) Y. J. Lee, K. Lee, E. H. Jung, H. B. Jeon, K. S. Kim, Org.
Lett. 2005, 7, 3263–3266; i) S. A. Thadke, B. Mishra, S. Hotha, Org.
Lett. 2013, 15, 2466–2469.
[14] a) L. E. Overman, E. J. Velthuisen, Org. Lett. 2004, 6, 3853–3856; b) L.
E. Overman, P. S. Tanis, J. Org. Chem. 2010, 75, 455–463.
[15] S. Ghosh, T. K. Pradhan, Synlett 2007, 15, 2433–2435.
[16] See the supporting information.
[17] a) J-Y Pan, S-L Chen, M-H Yang, J. Wu, J. Sinkkonen, K. Zoud, Nat.
Prod. Rep. 2009, 26, 1251–1292; b) N. Sultana, Atta-ur-Rahman, S.
Jahan, Z. Naturforsch. 2005, 60b, 1202–1206.
[18] a) J. Sikorska, A. M. Hau, C. Anklin, S. Parker-Nance, M. T. Davies-
Coleman, J. E. Ishmael, K. L. McPhail, J. Org. Chem. 2012, 77,
6066−6075; b) M. H. Nguyen, M. Imanishi, T. Kurogi, A. B. Smith III, J.
Am. Chem. Soc. 2016, 138, 3675−3678; c) N. Veerasamy, A. Ghosh, J.
Li, K. Watanabe, J. D. Serrill, J. E. Ishmael, K. L. McPhail, R. G. Carter,
J. Am. Chem. Soc. 2016, 138, 770−773.
[3]
a) P. Goekjian, A. Haudrechy, B. Menhour, C. Coiffier, C-Furanosides
Synthesis and Stereochemistry; Academic Press, 2017; b) R. J. Hewitt,
J. E. Harvey, Chem. Commun. 2011, 47, 421–423; c) Y. Bing-Hui, J. Ji-
Qing, H. Xi-Lin, W. Hou-Ming, Chinese J. Chem. 1997, 15, 178–187; d)
L. Nicolas, E. Izquierdo, P. Angibaud, I. Stansfield, L. Meerpoel, S.
Reymond, J. Cossy, J. Org. Chem. 2013, 78, 11807−11814; e) S, Jürs,
J. Thiem, J. Carbohydrate Chem. 2009, 28, 293–297; f) Y. Guindon, D.
Delorme, Can. J. Chem. 1987, 65, 1438–1440; g) K. A. Parker, D.-S.
Su, J. Org. Chem. 1996, 61, 2191–2194; h) S. Hainke, I. Singh, J.
Hemmings, O. Seitz, J. Org. Chem. 2007, 72, 8811–8819; i) Y. Yang, B.
Yu, Chem. Rev. 2017, 117, 12281–12356; j) J. Ma, H. Yao, X-W. Liu,
Org. Biomol. Chem. 2018, 16, 1791–1806; k) K. Kitamura, Y. Ando, T.
Matsumoto, K. Suzuki, Chem. Rev. 2018, 118, 1495–1598; l) M. A. El-
Atawy, M. N. A. Al-Moaty, A. Amer, Am. J. Chem. 2013, 3, 77–95; m) S.
[19] a) K. Kong, Z. Moussa, C. Lee, D. Romo, J. Am. Chem. Soc. 2011, 133,
19844–19856; (b) K. Harju, H. Koskela, A. Kremp, S. Suikkanen, P.
Iglesia, C. O. Miles, B. Krock, P. Vanninen, Toxicon 2016, 112, 68–76.
This article is protected by copyright. All rights reserved.