J.D. White et al. / Tetrahedron 65 (2009) 6635–6641
6641
5. (a) Vezina, D.; Kudelski, A.; Sehgal, S. N. J. Antibiot. 1975, 28, 721; (b) Sehgal, S.
N.; Baker, H.; Vezina, C. J. Antibiot. 1975, 28, 727.
6. Morris, R. E.; Meister, B. M. Med. Sci. Res. 1989, 17, 609.
dimethoxybenzyloxythiolate (55, R¼3,4-DMB). Thus, increased
electron donation into the ketene enhances both yield and stereo-
selectivity in this asymmetric aldol reaction.
Hydroxythiol ester 71 obtained above was advanced via silyla-
tion of the free alcohol to its TIPS ether 73; subsequent cleavage of
the p-methoxybenzyl ether then furnished 74 (Scheme 14). This
alcohol was reacted with diazomethane to yield methyl ether 75
representing C26–C33 of rapamycin. This fragment will be linked to
C34–C42 subunit 43 for eventual assembly of the framed segment
of 3 shown in Scheme 7.
7. (a) Nicolaou, K. C.; Chakraborty, T. K.; Piscopio, A. D.; Minowa, N.; Bertinato, P.
J. Am. Chem. Soc. 1993, 115, 4419; (b) Romo, D.; Meyer, S. D.; Johnson, D. D.;
Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 7906; (c) Hayward, C. M.; Yohannes,
D.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115, 9345; (d) Smith, A. B., III;
Condon, S. M.; McCauley, J. A.; Leazer, J. L., Jr.; Leahy, J. W.; Maleczka, R. E., Jr.
J. Am. Chem. Soc. 1995, 117, 5407; (e) Ball, M.; Gaunt, M. J.; Hook, D. F.; Jessiman,
A. S.; Kawahara, S.; Orsini, P.; Scolaro, A.; Talbot, A. C.; Tanner, H. R.; Yamanoi, S.;
Ley, S. V. Angew. Chem., Int. Ed. 2005, 44, 5433; (f) Maddess, M. L.; Tackett, M. N.;
Watanabe, H.; Brennan, P. E.; Spilling, C. D.; Scott, J. S.; Osborn, D. P.; Ley, S. V.
Angew. Chem., Int. Ed. 2007, 46, 591.
8. (a) Jones, T. K.; Mills, S. G.; Reamer, R. A.; Askin, D.; Desmond, R.; Volante, R. P.;
Shinkai, I. J. Am. Chem. Soc. 1989, 111, 1157; (b) Jones, T. K.; Reamer, R. A.;
Desmond, R.; Mills, S. G. J. Am. Chem. Soc. 1990, 112, 2998; (c) Nakatsuka, M.;
Ragan, J. A.; Sammakia, T.; Smith, D. B.; Uehling, D. E.; Schreiber, S. L. J. Am.
Chem. Soc. 1990, 112, 5583; (d) Ireland, R. E.; Gleason, S. L.; Gegnas, L. D.;
Highsmith, T. K. J. Org. Chem. 1996, 61, 6856; (e) Ireland, R. E.; Liu, L.; Roper, T.
D.; Gleason, J. L. Tetrahedron 1997, 53, 13257.
9. For earlier approaches to this subunit of FK-506, see: (a) Mills, S.; Desmond, R.;
Reamer, R. A.; Volante, R. P.; Shinkai, I. Tetrahedron Lett. 1988, 29, 281; (b) Rama
Rao, A. V.; Chakraborty, T. K.; Sankaranayanan, D.; Purandare, A. V. Tetrahedron
Lett. 1991, 32, 547.
10. White, J. D.; Toske, S. G.; Yakura, T. Synlett 1994, 591.
11. White, J. D.; Deerberg, J. Chem. Commun. 1997, 1919.
12. White, J. D.; Cammack, J. H.; Sakuma, K.; Rewcastle, G. W.; Widener, R. K. J. Org.
Chem. 1995, 60, 3600.
13. Roush, W. R.; Palkowitz, A. D.; Ando, K. J. Am. Chem. Soc. 1990, 112, 6348.
14. De Pooter, H.; De Brucker, J.; Van Sumere, C. F. Bull. Soc. Chim. Belg. 1975, 84, 835.
15. Hanessian, S.; Plessas, N. R. J. Org. Chem. 1969, 34, 1053.
16. Barton, D. H. R.; Hay-Motherwell, R. S.; Motherwell, W. B. J. Chem. Soc., Perkin
Trans. 1 1981, 2363.
3. Conclusion
Enantiopure quinic acid provides a useful starting material for
acquiring the 1,3,4-trisubstituted cyclohexane unit of FK-506 and
rapamycin. The key C23–C24 connection for FK-506 can be forged
with complete stereospecificity by means of an aldol coupling,
leading to a fragment inwhich all seven of the stereogenic centers as
well as the (E)-trisubstituted alkene in the C20–C42 segment of the
macrolide are installed correctly. Unfortunately, the 35(R) methyl
configuration of rapamycin is not solved by this approach. Never-
theless, an asymmetric aldol protocol does permit access to the anti
diol unit present in the C26–C33 sector of this immunosuppressant.
Acknowledgements
17. Patrica, K. S.; Thomas, J. W.; Stuart, L. S. J. Am. Chem. Soc. 1991, 113, 8045.
18. Frater, G. Helv. Chim. Acta 1979, 62, 2825.
J.D. is grateful to the Swiss National Science Foundation for a Post-
doctoral Fellowship (SIGE-41174). Financial support was provided by
the National Institute of General Medical Sciences (GM50574).
19. Cf Gu, R.-L.; Sih, C. J. Tetrahedron Lett. 1990, 31, 3287.
20. Brown, J. M. Angew. Chem., Int. Ed. Engl. 1987, 190.
21. Paterson, I.; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.;
Norcross, R. D. Tetrahedron 1990, 46, 4663.
22. Evans, D. A.; Morrissey, M. M. J. Am. Chem. Soc. 1984, 106, 3866.
23. Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560.
24. Nakata, M.; Toshima, K.; Kai, T.; Kinoshita, M. Bull. Chem. Soc. Jpn. 1985, 58, 3457
and references cited.
25. Corey, E. J.; Enders, D.; Bock, M. G. Tetrahedron Lett. 1976, 7.
26. White, J. D.; Amedio, J. C., Jr.; Gut, S.; Ohira, S.; Jayasinghe, L. R. J. Org. Chem.
1992, 57, 2270.
27. (a) Mukaiyama, T.; Uchiro, U.; Shiina, I.; Kobayashi, S. Chem. Lett. 1990, 1019; (b)
Mukaiyama, T.;Shiina, I.;Uchiro,H.;Kobayashi, S.Bull. Chem.Soc.Jpn.1994, 67,1708.
28. Kanda, Y.; Fukuyama, T. J. Am. Chem. Soc. 1993, 115, 8451.
29. Mukaiyama, T.; Kobayashi, S.; Sano, T. Tetrahedron 1990, 46, 4653.
30. Baker, R.; Boyes, R. H. O.; Broom, D. M. P.; O’Mahony, M. J.; Swain, C. J. J. Chem.
Soc., Perkin Trans. 1 1987, 1613.
31. Ley, S. V.; Norman, J.; Griffith, W. D.; Marsden, S. D. Synthesis 1994, 639.
32. Campbell, K. N.; Sommers, A. H.; Campbell, B. K. J. Am. Chem. Soc. 1944, 66,
82.
Supplementary data
Experimental procedures and characterization data for new
compounds. Supplementary data associated with this article can be
References and notes
1. Morris, R. E. In New Immunosuppressive Modalities and Anti-rejection Approaches in
Organ Transplantation; Kupiec-Weglinski, J. W., Ed.; R.G. Landes: Austin, TX, 1994.
2. Crabtree, G. R. Science 1989, 243, 355.
3. Emmel, E. A.; Verweij, C. L.; Durand, D. B.; Higgins, K. M.; Lacy, E.; Crabtree, G. R.
Science 1989, 246, 1617.
33. de Lera, A. R.; Iglesias, B.; Rodrı´guez, J.; Alvarez, R.; Lo´pez, S.; Villanueva, X.;
4. Tanaka, H.; Kuroda, A.; Marusawa, H.; Hatanaka, H.; Kino, T.; Goto, T.;
Hashimato, M.; Taga, T. J. Am. Chem. Soc. 1987, 109, 5031.
´
Padros, E. J. Am. Chem. Soc. 1995, 117, 8220.