ChemComm
Communication
Notes and references
1 A. Pelter and K. Smith, ‘‘Oxidation of Carbon-Boron Bonds’’ Compre-
hensive Organic Synthesis, Elsevier, p. 593.
2 For Cu-based approaches, see: (a) H. Ito and K. Kubota, Org. Lett.,
2012, 14, 890–893; (b) C.-T. Yang, Z.-Q. Zhang, H. Tajuddin, C.-C. Wu,
J. Liang, J.-H. Liu, Y. Fu, M. Czyzewska, P. G. Steel, T. B. Marder and
L. Liu, Angew. Chem., Int. Ed., 2012, 51, 528–532. For Pd-based
`
approaches, see: (c) G. Dutheuil, N. Selander, K. J. Szabo and
V. K. Aggarwal, Synthesis, 2008, 2293–2297. For Ni-based approaches,
see: (d) A. S. Dudnik and G. C. Fu, J. Am. Chem. Soc., 2012, 134,
10693–10697; (e) J. Yi, J.-H. Liu, J. Liang, J.-J. Dai, C.-T. Yang, Y. Fu and
L. Liu, Adv. Synth. Catal., 2012, 354, 1685–1691. For a Mg-based
approach, see: ( f ) C. Pintaric, S. Olivero, Y. Gimbert, P. Y. Chavant
˜
and E. Dunach, J. Am. Chem. Soc., 2010, 132, 11825–11827.
3 (a) J. L. Stymiest, G. Dutheuil, A. Mahmood and V. K. Aggarwal,
Angew. Chem., Int. Ed., 2007, 46, 7491–7494; (b) R. Larouche-Gauthier,
C. J. Fletcher, I. Couto and V. K. Aggarwal, Chem. Commun., 2011, 47,
12592–12594; (c) J. L. Stymiest, V. Bagutski, R. M. French and
V. K. Aggarwal, Nature, 2008, 456, 778–782; (d) V. Bagutski, R. M.
French and V. K. Aggarwal, Angew. Chem., Int. Ed., 2010, 49,
5142–5145; (e) A. P. Pulis, D. J. Blair, E. Torres and V. K. Aggarwal,
J. Am. Chem. Soc., 2013, 135, 16054–16057.
Scheme 3
In order to probe reversibility, we added Et–B(pin) after
formation of the boron–ate complexes 26 but none of the
Et-incorporated boronic ester 27 was observed (Scheme 3B). In a
control experiment, reaction of Li-20 with a 1 : 1 mixture of HB(pin)
and EtB(pin) gave a 63 : 37 ratio of 21 :27 showing that both boronic
esters had similar reactivity towards Li-20 (see the ESI†). These
experiments ruled out reversibility as a source of the erosion in ee.
Instead, we believe that the small erosion in ee arises from a
strong preference of the boron–ate complex to adopt a con-
formation in which one of the oxygens of the pinacol ester is
positioned anti-periplanar to the carbamate. Subsequent
oxygen-assisted expulsion of the carbamate followed by hydride
migration would then occur with overall retention of configu-
ration.12 Initial computational studies support this hypothesis
(Scheme 3C). The degree to which this minor pathway occurs is
substrate dependent, but the dominant pathway remains the
stereospecific 1,2-migration with inversion.
4 (a) D. Uguen, Bull. Soc. Chim. Fr. II, 1981, 99; (b) L. Liu, J. A.
´
Henderson, A. Yamamoto, P. Bremond and Y. Kishi, Org. Lett.,
2012, 14, 2262–2265.
5 R. L. Danheiser and A. C. Savoca, J. Org. Chem., 1985, 50, 2401–2403.
6 (a) A. Carstens and D. Hoppe, Tetrahedron, 1994, 50, 6097–6108;
(b) D. Hoppe, A. Carstens and T. Kramer, Angew. Chem., Int. Ed.,
1990, 29, 1424–1425.
7 Yield obtained after oxidation of 40 to the alcohol.
8 For selected examples, see: (a) D. Noh, H. Chea, J. Ju and J. Yun,
Angew. Chem., Int. Ed., 2009, 48, 6062–6064; (b) D. Noh, S. K. Yoon,
J. Won, J. Y. Lee and J. Yun, Chem.–Asian J., 2011, 6, 1967–1969;
(c) C. M. Crudden, Y. B. Hleba and A. C. Chen, J. Am. Chem. Soc.,
2004, 126, 9200–9201; (d) S. A. Moteki, D. Wu, K. L. Chandra,
D. S. Reddy and J. M. Takacs, Org. Lett., 2006, 8, 3097–3100. Reviews:
(e) I. Beletskaya and A. Pelter, Tetrahedron, 1997, 53, 4957–5026;
( f ) C. M. Crudden and D. Edwards, Eur. J. Org. Chem., 2003,
4695–4712.
9 For representative reviews, see: (a) Y. Yamamoto and N. Asao,
Chem. Rev., 1993, 93, 2207–2293; (b) I. Marek and G. Sklute, Chem.
Commun., 2007, 1683–1691; (c) T. R. Ramadhar and R. A. Batey,
Synthesis, 2011, 1321–1346. For their use in Suzuki cross-couplings,
see: (d) L. Chausset-Boissarie, K. Ghozati, E. LaBine, J. L. Y. Chen,
V. K. Aggarwal and C. M. Crudden, Chem.–Eur. J., 2013, 19,
17698–17701.
In conclusion we have reported the facile migration of hydride
in lithiation–borylation reactions and we have applied it to the
preparation of a variety of primary and secondary boronic esters. 10 (a) Pd-catalyzed borylation of geraniol and the mono-carbamate
analog of 11 with B2(pin)2 was also possible but 10 and 13 were
obtained as inseparable mixtures of isomers [see ESI†]; (b) For
an electrochemical approach to 10, see: J. Godeau, C. Pintaric,
Using this protocol variously substituted boronic esters can now
be obtained with very high levels of enantioselectivity and double
˜
S. Olivero and E. Dunach, Electrochim. Acta, 2009, 54, 5116–5119.
bond geometry, where current methodology is limited.
We thank EPSRC and the European Research Council (FP7/
2007-2013, ERC grant no. 246785) for support. R. R. thanks the
Marie Curie Fellowship program (EC FP7, no. 329578).
˜
11 C. Pintaric, C. Laza, S. Olivero and E. Dunach, Tetrahedron Lett.,
2004, 45, 8031–8033.
12 M. E. Jung, A. van den Heuvel, A. G. Leach and K. N. Houk, Org. Lett.,
2003, 5, 3375–3378.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 4053--4055 | 4055