Organic & Biomolecular Chemistry
Communication
U. Scholz and D. Ganzer, Synlett, 2003, 2428; (f) S. V. Ley
and A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42, 5400;
(g) S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed.,
2004, 43, 1043.
7 (a) D. Baranano, G. Mann and J. F. Hartwig, Curr. Org.
Chem., 1997, 1, 287; (b) J. F. Hartwig, Acc. Chem. Res., 1998,
31, 852; (c) J. F. Hartwig, Angew. Chem., Int. Ed., 1998, 37,
2046; (d) A. R. Muci and S. L. Buchwald, Top. Curr. Chem.,
2002, 219, 131.
8 For examples of transition metal-catalyzed C(sp2)–H alkoxy-
lation, see: (a) A. R. Dick, K. L. Hull and M. S. Sanford,
J. Am. Chem. Soc., 2004, 126, 2300; (b) L. V. Desai,
H. A. Malik and M. S. Sanford, Org. Lett., 2006, 8, 1141;
(c) G.-W. Wang and T.-T. Yuan, J. Org. Chem., 2010, 75, 476;
(d) X. Wang, Y. Lu, H.-X. Dai and J.-Q. Yu, J. Am. Chem. Soc.,
2010, 132, 12203; (e) Y. Wei and N. Yoshikai, Org. Lett.,
2011, 13, 5504; (f) B. Xiao, T.-J. Gong, Z.-J. Liu, J.-H. Liu,
D.-F. Luo, J. Xu and L. Liu, J. Am. Chem. Soc., 2011, 133,
9250; (g) J. Zhao, Y. Wang, Y. He, L. Liu and Q. Zhu, Org.
Lett., 2012, 14, 1078; (h) T.-S. Jiang and G.-W. Wang, J. Org.
Chem., 2012, 77, 9504; (i) N. Takemura, Y. Kuninobu and
M. Kanai, Org. Lett., 2013, 15, 844.
Scheme 1 Proposed mechanism for the catalytic benzylic C(sp3)–H
alkoxylation.
the use of a directing group or an excess amount of the alkoxy-
lating reagents (alcohols). The alkoxylated product was
obtained on the gram scale, and an intermolecular reaction
also occurred. This reaction provides a useful strategy for syn-
thetic organic chemistry.
9 R. Giri, J. Liang, J.-G. Lei, J.-J. Li, D.-H. Wang, X. Chen,
I. C. Naggar, C. Guo, B. M. Foxman and J.-Q. Yu, Angew.
Chem., Int. Ed., 2005, 44, 7420.
10 S.-Y. Zhang, G. He, Y. Zhao, K. Wright, W. A. Nack and
G. Chen, J. Am. Chem. Soc., 2012, 134, 7313.
Acknowledgements
This work was supported in part by ERATO of JST.
11 S. Bhadra, C. Matheis, D. Katayev and L. J. Gooßen, Angew.
Chem., Int. Ed., 2013, 52, 9279.
12 During our investigation, palladium-catalyzed alkoxylation
at the terminal and internal positions of alkyl chains using
an excess amount of alcohols as alkoxylating reagents was
reported. See: F.-J. Chen, S. Zhao, F. Hu, K. Chen,
Q. Zhang, S.-Q. Zhang and B.-F. Shi, Chem. Sci., 2013, 4,
4187.
Notes and references
1 T. Fujita, K. Wada, M. Oguchi, H. Yanagisawa, K. Fujimoto,
T. Fujiwara, H. Horikoshi and T. Yoshioka, EP Patent,
745600, 1996.
2 V. B. Lohray, B. B. Lohray, R. B. Paraselli, R. M. Gurram,
R. Ramanujam, R. Chakrabarti and S. K. S. Pakala, WO, 13 The intramolecular alkoxylation did not proceed using the
9741097, 1997.
following transition metal salts and complexes as a catalyst:
MnCl2, MnBr(CO)5, FeCl2, CoCl2, RhCl(PPh3)3, NiCl2,
NiBr2, NiI2, Ni(OAc)2, Ni(OTf)2, [IrCl(cod)]2, PdCl2, PdBr2,
Pd(OAc)2, Pd(Opiv)2, Pd(acac)2.
3 P. R. Verhoest, D. S. Chapin, M. Corman, K. Fonseca,
J. F. Harms, X. Hou, E. S. Marr, F. S. Menniti, F. Nelson,
R. O’Connor, J. Pandit, C. Proulx-LaFrance, A. W. Schmidt,
C. J. Schmidt, J. A. Suiciak and S. Liras, J. Med. Chem., 14 Investigation of several solvents: hexane, 0%; PhCF3, 9%;
2009, 52, 5188. o-xylene, 18%; m-xylene, 6%; CH2ClCH2Cl, 4%; NMP, 0%.
4 B. K. Albrecht, J.-C. Harmange, D. Bauer, L. Berry, C. Bode, 15 Investigation of several oxidants: Ag2CO3, 11%; no reaction:
A. A. Boezio, A. Chen, D. Choquette, I. Dussault,
tBuOOBz, tert-butyl hydroperoxide (TBHP), oxone, PhI-
C. Fridrich, S. Hirai, D. Hoffman, J. F. Larrow, P. Kaplan-
(OAc)2, K2S2O8, O2 (1.0 atm).
Lefko, J. Lin, J. Lohman, A. M. Long, J. Moriguchi, 16 1-(2-Methyl-1H-benzo[d]imidazol-1-yl)-2-propanol (1t, R1
=
A. O’Connor, M. H. Potashman, M. Reese, K. Rex,
A. Siegmund, K. Shah, R. Shimanovich, S. K. Springer,
Y. Teffera, Y. Yang, Y. Zhang and S. F. Bellon, J. Med. Chem.,
2008, 51, 2879.
Me, R2 = H) and 2-(2-methyl-1H-benzo[d]imidazol-1-yl)-
ethanol (1u, R1 = R2 = H) also gave the corresponding intra-
molecular alkoxylated products 2t and 2u in 40% and 24%
yields, respectively.
5 (a) O. C. Dermer, Chem. Rev., 1934, 14, 385; (b) U. Koert, 17 An asymmetric reaction proceeded using a chiral ligand
Synthesis, 1995, 115.
instead of 5,6-dimethylphenanthroline though the yield
and enantiomeric excess were low. Treatment of benzimid-
azole 1l bearing an ethyl group at 2-position with a catalytic
amount of CuBr2/(−)-sparteine and (tBuO)2 gave 2l* in
14% yield and 11% ee. For several examples of asymmetric
6 (a) J. F. Bunnett and R. E. Zahler, Chem. Rev., 1951, 49, 273;
(b) A. A. Moroz and M. S. Shvartsberg, Russ. Chem. Rev.,
1974, 43, 1443; (c) J. Lindley, Tetrahedron, 1984, 40, 1433;
(d) J. S. Sawyer, Tetrahedron, 2000, 56, 5045; (e) K. Kunz,
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem., 2014, 12, 2528–2532 | 2531