Organometallics
Article
Y.-H.; Zhang, Y.; Ding, X.-H. Inorg. Chem. Commun. 2011, 14, 1306−
1310. (q) Fang, H.; Choe, Y.-K; Li, Y.; Shimada, S. Chem.Asian J.
2011, 6, 2512. (r) Garcia-Camprubi, A.; Martin, M.; Sola, E. Inorg.
Chem. 2010, 49, 10649−10657. (s) Sola, E.; Garcia-Camprubi, A.;
Andres, J. L.; Martin, M.; Plou, P. J. Am. Chem. Soc. 2010, 132, 9111−
9121. (t) Hill, A. F.; Neumann, H.; Wagler, J. Organometallics 2010,
29, 1026−1031. (u) Dixon, L. H. S.; Hill, A. F.; Sinha, A.; Ward, J. S.
Organometallics 2014, 23, 653−658. (v) Wu, S.; Li, X.; Xiong, Z.; Xu,
W.; Lu, Y.; Sun, H. Organometallics 2013, 22, 3227−3237. (w) Bernal,
M. J.; Torres, O.; Martín, M.; Sola, E. J. Am. Chem. Soc. 2013, 135,
19008−19015.
(7) Zhu, J.; Lin, Z.; Marder, T. B. Inorg. Chem. 2005, 44, 9384.
(8) Herein, we will employ the covalent bond classification (Z, X, L
etc.) recommended by Green to indicate the nature of the LaxLeqLax
donor set: Green, M. L. H. J. Organomet. Chem. 1995, 500, 127−148.
Metallaboratranes such as [IrH(CO)(PPh3){BH(mt)2}] (mt =
methimazolyl) would accordingly be designated as LZL-SBS pincers.
(9) Notwithstanding the multitude of definitions for “valency”, use of
the terms oxidative addition or oxidation state in this context is of
questionable utility given that both boron and hydrogen have
electronegativities lower than or comparable to those of the platinum
group metals.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Australian Research Council
(DP110101611, DP130102598). The assistance of Dr.
Anthony C. Willis in the acquisition and interpretation of
crystallographic data is gratefully acknowledged.
REFERENCES
■
(1) For recent reviews covering metal−boron dative bonding see:
(a) Bouhadir, G.; Amgoune, A.; Bourissou, D. Adv. Organomet. Chem.
2010, 58, 1−107. (b) Braunschweig, H.; Dewhurst, R. D. Dalton Trans.
2011, 40, 549−558. (c) Braunschweig, H.; Dewhurst, R. D.;
Schneider, A. Chem. Rev. 2010, 110, 3924−3957.
(2) (a) Crossley, I. R.; Hill, A. F.; Willis, A. C. Organometallics 2005,
24, 1062−1064. (b) Segawa, Y.; Yamashita, M.; Nozaki, K.
Organometallics 2009, 28, 6234−6242. (c) Segawa, Y.; Yamashita,
M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 9201−9203. (d) Hasegawa,
M.; Segawa, Y.; Yamashita, M.; Nozaki, K. Angew. Chem., Int. Ed. 2012,
51, 5956−6960. (e) Masuda, Y.; Hasegawa, M.; Yamashita, M.;
Nozaki, K.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2013, 135,
7142−7145. (f) Ogawa, H.; Yamashita, M. Dalton Trans. 2013, 42,
625−629. (g) Spokoyny, A. M.; Reuter, M. G.; Stern, C. L.; Ratner, M.
A.; Seideman, T.; Mirkin, C. A. J. Am. Chem. Soc. 2009, 131, 9482−
9483. (h) El-Zaria, M. E.; Arii, H.; Nakamura, H. Inorg. Chem. 2011,
50, 4149−4161. (i) Hill, A. F.; Lee, S. B.; Park, J.; Shang, R.; Willis, A.
C. Organometallics 2010, 29, 5661−5669. (j) Miyada, T.; Yamashita,
M. Organometallics 2013, 22, 5281−5284. (k) Lin, T.-P.; Peters, J. C. J.
Am. Chem. Soc. 2013, 135, 15310−15313.
(3) (a) Irvine, G. J.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.;
Rice, C. R.; Robins, E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J.
Chem. Rev. 1998, 98, 2685−2722. (b) Smith, M. R., III. Prog. Inorg.
Chem. 1999, 48, 505−567. (c) Aldridge, S.; Coombs, D. L. Coord.
Chem. Rev. 2004, 248, 535−559. (d) Braunschweig, H.; Colling, M.
Coord. Chem. Rev. 2001, 223, 1−51.
(10) In contrast to the trigonal bipyramidal geometry, which is
preferred for d8-ML5 complexes, the corresponding singlet d6-ML5
system is prone to a Jahn−Teller distortion away from the idealized
tbp geometry, for a which an electronic degeneracy (dxy compared
with dx −y ) would exist. For complexes of the form trans-ML3(PR3)2
2
2
some relaxation of this requirement might be expected for a
heteroleptic ML3 equaltorial ligand set.
(11) (a) Riehl, J. F.; Jean, Y.; Eisenstein, O.; Pelissier, M.
Organometallics 1992, 11, 729−737. (b) Jean, Y.; Eisenstein, O.
Polyhedron 1988, 7, 405−407.
(12) Lam, W. H.; Shimada, S.; Batsanov, A. S.; Lin, L.; Marder, T. B.;
Cowan, J. A.; Howard, J. A. K.; Mason, S. A.; McIntyre, G. J.
Organometallics 2003, 22, 4557−4568. This complex was also
characterized by neutron diffraction and computationally interrogated;
however for consistency the X-ray-derived metrical parameters are
given here.
(13) As far as we can ascertain, the only structural data for an
osmium σ-borane held in the Cambridge Crystallographic Data Base
pertain to the metallacyclic complex [OsH{H(BBN)CH2PMe2}
(PMe3)3] obtained from the reaction of [OsH(CH2PMe2)(PMe3)3]
with (HBBN)2: Baker, R. T.; Calabrese, J. C.; Westcott, S. A.; Marder,
T. B. J. Am. Chem. Soc. 1995, 117, 8777−8784.
(4) (a) Morales-Morales, D.; Jensen, C. G. M. The Chemistry of Pincer
Compounds; Elsevier Science: 2007. (b) Peris, E.; Crabtree, R. H.
Coord. Chem. Rev. 2004, 248, 2239−2246.
(5) Chase, P. A.; Koten, G. V. The Pincer Ligand: Its Chemistry and
Applications (Catalytic Science), 1 ed.; Imperial College Press: London,
2010.
(14) A (non σ-) borane complex [Os(CO)(PPh3){B(mt)3}] (mt =
methimazolyl) has been structurally characterized but has the
metallaboratrane structure with a direct 2c-2e Os→B interaction, i.e.,
without a 3c-2e B−H−Os connectivity. The isolated but soultion
unstable σ-borane complex [Os(C6H5)(CO)(PPh3){κ3-H,S,S′-
HB(mt)3}] has been proposed as an intermediate en route to the
formation of [Os(CO)(PPh3){B(mt)3}]: Foreman, F. R. St.-J; Hill, A.
F.; White, A. J. P.; Williams, D. J. Organometallics 2004, 23, 913−916.
(15) For metallaboratranes, The (M→B)n formalism denotes n metal
valence electrons including the pair associated with the dative M→B
bond: Hill, A. F. Organometallics 2006, 25, 4741−4743.
(16) Foreman, M. R. St.-J.; Hill, A. F.; Owen, G. R.; White, A. J. P.;
Williams, D. J. Organometallics 2003, 22, 4446−4450.
(6) (a) Stobart, S. R.; Zhou, X.; Cea-Olivares, R.; Toscano, A.
Organometallics 2001, 20, 4766−4768. (b) Bushnell, G. W.; Casado,
M. A.; Stobart, S. R. Organometallics 2001, 20, 601−603. (c) Zhou, X.;
Stobart, S. R. Organometallics 2001, 20, 1898−1900. (d) Brost, R. D.;
Bruce, G. C.; Joslin, F. L.; Stobart, S. R. Organometallics 1997, 16,
5669−5680. (e) Tilley, T. D.; Sangtrirutnugul, P. Organometallics
2008, 27, 2223−2230. (f) Kwok, W.-H.; Lu, G.-L.; Rickard, C. E. F.;
Roper, W. R.; Wright, L. J. J. Organomet. Chem. 2004, 689, 2511−
2522. (g) Ruddy, A. J.; Mitton, S. J.; McDonald, R.; Turculet, L. Chem.
Commun. 2012, 48, 1159−1161. (h) MacInnis, M. C.; McDonald, R.;
Ferguson, M. J.; Tobisch, S.; Turculet, L. J. Am. Chem. Soc. 2011, 133,
13622−13633. (i) Mitton, S. J.; McDonald, R.; Turculet, L. Angew.
Chem., Int. Ed. 2009, 48, 8568−8571. (j) Morgan, E.; MacLean, D. F.;
McDonald, R.; Turculet, L. J. Am. Chem. Soc. 2009, 131, 14234−
14236. (k) Mitton, S. J.; McDonald, R.; Turculet, L. Organometallics
2009, 28, 5122−5136. (l) MacLean, D. F.; McDonald, R.; Ferguson,
M. J.; Caddell, A. J.; Turculet, L. Chem. Commun. 2008, 5146−5148.
(m) MacInnis, M. C.; MacLean, D. F.; Lundgren, R. J.; McDonald, R.;
Turculet, L. Organometallics 2007, 26, 6522−6525. (n) Korchin, E. E.;
Leitus, G.; Shimon, L. J. W.; Konstantinovski, L.; Milstein, D. Inorg.
Chem. 2008, 47, 7177−7189. (o) Li, Y.-H.; Ding, X.-H.; Zhang, Y.; He,
W.-R.; Huang, W. Inorg. Chem. Commun. 2012, 15, 194−197. (p) Li,
(17) Abernethy, R. J.; Hill, A. F.; Tshabang, N.; Willis, A. C.; Young,
R. D. Organometallics 2009, 28, 488−492.
(18) Hallman, P. S.; Stephenson, T. A.; Wilkinson, G. Inorg. Synth.
1970, 12, 237−240.
(19) Elliott, G. P.; McAuley, N. M.; Roper, W. R.; Shapley, P. A.
Inorg. Synth. 2009, 26, 184−185.
(20) Abernethy, R. J.; Hill, A. F.; Smith, M. K.; Willis, A. C.
Organometallics 2009, 28, 6152−6159.
(21) ConQuest, Version 1.15, Cambridge Crystallographic Data
Centre, February 2014 release.
(22) (a) Rickard, C. E. F.; Roper, W. R.; Williamson, A.; Wright, L. J.
J. Organomet. Chem. 2004, 689, 1609−1616. (b) Rickard, C. E. F.;
1984
dx.doi.org/10.1021/om5001106 | Organometallics 2014, 33, 1977−1985