2259
A. K. Dheere et al.
Letter
Synlett
HDBU
H2N
H
H
H
R1
O
*
[
11C]CO2
H
*
DBAD
PBu3
N
O
N
N
*
*
R1
C
N
C
PBu3
R1
C
R1
NH2
R1
R1
O
DBU
O
O
intermediate I
intermediate II
Scheme 2 Proposed route for the synthesis of symmetrical [11C]urea
donating (OMe, 6) or electron-withdrawing (NO2, 7) groups
in para position were radiolabelled in over 70% RCYs. Inter-
estingly, similar RCYs were observed for the synthesis of
[11C]3 when the Mitsunobu reaction time was reduced to
one minute.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
o
nrtIo
g
f
rmoaitn
S
u
p
p
ortiInfogrmoaitn
The reaction for the synthesis of symmetrical [11C]ureas
is proposed to occur in three steps (Scheme 2): (i) formation
of intermediate I from [11C]CO2 and amine in the presence
of DBU; (ii) reaction of I with the Mitsunobu reagents giving
intermediate II; (iii) formation of the urea by nucleophilic
attack of an another amine on II. The formation of interme-
diate I requires the concomitant presence of an amine and
the trapping reagent DBU (see Supporting Information, Ta-
ble SI1 and Table 1, entry 12). These results are in agree-
ment with the previously proposed trapping mechanism
whereby the amine traps the [11C]CO2 forming a zwitterion
which is deprotonated by DBU giving a carbamate anion
(intermediate I).8 When Mitsunobu reagents are added to
the reaction mixture, a phosphine oxonium ion (intermedi-
ate II) is formed (see Supporting Information, Figure SI2). In
the last step, intermediate II reacts with another molecule
of amine producing the [11C]urea.
References and Notes
(1) (a) Miller, P.; Long, N.; Vilar, R.; Gee, A. Angew. Chem. Int. Ed.
2008, 47, 8998. (b) Gee, A. Br. Med. Bull. 2003, 65, 169.
(c) Cunningham, V.; Parker, C.; Rabiner, E.; Gee, A.; Gunn, R.
Drug Discovery Today 2005, 2, 311. (d) Kealey, S.; Turner, E.;
Husbands, S.; Salinas, C.; Jakobsen, S.; Tyacke, R.; Nutt, D.;
Parker, C.; Gee, A. J. Nucl. Med. 2013, 54, 139. (e) Ametamey, S.;
Horner, M.; Schubiger, P. Chem. Rev. 2008, 108, 1501. (f) Antoni,
G. J. Label. Compd. Radiopharm. 2015, 58, 65. (g) Kealey, S.; Gee,
A.; Miller, P. J. Label. Compd. Radiopharm. 2014, 57, 195.
(2) (a) Iwata, R.; Pascali, C.; Bogni, A.; Miyake, Y.; Yanai, K.; Ido, T.
Appl. Radiat. Isot. 2001, 55, 17. (b) Cleij, M.; Clark, J.; Baron, J.;
Aigbirhio, F. J. Label. Compd. Radiopharm. 2007, 50, 19.
(c) Kealey, S.; Husbands, S.; Bennacef, I.; Gee, A.; Passchier, J. J.
Label. Compd. Radiopharm. 2014, 57, 202. (d) Child, C.; Kealey,
S.; Jones, H.; Miller, P.; White, A.; Gee, A.; Long, N. J. Chem. Soc.,
Dalton Trans. 2011, 40, 6210. (e) Hooker, J. M.; Reibel, A. T.; Hill,
S. M.; Schueller, M. J.; Fowler, J. S. Angew. Chem. Int. Ed. 2009, 48,
6001.
In conclusion, a rapid method to radiolabel symmetrical
ureas with 11C has been developed, significantly improving
previously reported routes.5 The method incorporates
[11C]CO2 directly from the cyclotron into primary and sec-
ondary amines to form the corresponding [11C]ureas. Ali-
phatic, benzylic and aromatic molecules were radiolabelled
with high RCYs greater than 70%. The developed method
avoids the need for converting short-lived [11C]CO2 into
other reactive radiolabelling species and enables the oppor-
tunity to study the fate of urea-containing molecules (e.g.
Suramin,9 1,3-dibenzylurea10 and 1,3-dicyclohexylurea11) in
vivo using PET.
(3) (a) van Tilburg, E.; Windhorst, A.; van der Mey, M.; Herscheid, J.
J. Labelled Compd. Radiopharm. 2006, 49, 321. (b) Hooker, J. M.;
Reibel, A. T.; Hill, S. M.; Schueller, M. J.; Fowler, J. S. Angew.
Chem. Int. Ed. 2009, 48, 3482. (c) Wilson, A. A.; Garcia, A.; Houle,
S.; Vasdev, N. Org. Biomol. Chem. 2010, 8, 428. (d) Riss, P.; Lu, S.;
Telu, S.; Aigbirhio, F.; Pike, V. Angew. Chem. Int. Ed. 2012, 51,
2698. (e) Rotstein, B. H.; Hooker, J. M.; Woo, J.; Collier, T. L.;
Brady, T. J.; Liang, S. H.; Vasdev, N. Med. Chem. Lett. 2014, 5, 668.
(4) Rotstein, B. H.; Liang, S. H.; Holland, J. P.; Collier, T. L.; Hooker, J.
M.; Wilson, A. A.; Vasdev, N. Chem. Commun. 2013, 49, 5621.
(5) Haji Dheere, A.; Yusuf, N.; Gee, A. Chem. Commun. 2013, 49,
8193.
(6) See Supporting Information for full experimental details and
compound characterization.
Synthesis of Compound 1: Diisopropylethylamine (194 mg,
1.50 mmol) was added to mixture of 1-methylpiperazine (50
mg, 0.50 mmol), and 4-methylpiperazin-l-ylcarbonyl chloride
(122 mg, 0.75 mmol) in CH2Cl2 (20 mL). The resulting mixture
was stirred at r.t. for 1 h. Then, the mixture was concentrated
and recrystallised from EtOH to give 1 (30 mg, 27%). 1H NMR
(400 MHz, CDCl3): δ = 3.59 (m, 8 H), 2.56 (m, 8 H), 2.90 (s, 6 H).
13C NMR (100 MHz, CD3OD): δ = 163.65, 54.03, 45.04, 43.79.
HRMS: m/z [M + H]+ calcd for C11H22N4O: 227.1794; found:
227.2003.
Acknowledgment
This work was supported by the EPSRC, European Commission, FP7-
PEOPLE-2012-ITN (316882, RADIOMI) and Medical Research Council
(MRC, MR/K022733/1). The authors acknowledge financial support
from the Department of Health through the National Institute for
Health Research (NIHR) comprehensive Biomedical Research Centre
award to Guy’s & St Thomas’ NHS Foundation Trust in partnership
with King’s College London and King’s College Hospital NHS Founda-
tion Trust.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2257–2260