Inorganic Chemistry
Article
(29) Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C. Acc. Chem. Res.
2009, 42, 609−619.
(64) Laaksonen, L. J. Mol. Graphics 1992, 10, 33−&.
(65) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77,
3865−3868.
(30) Matsumoto, T.; Chang, H.-C.; Wakizaka, M.; Ueno, S.;
Kobayashi, A.; Nakayama, A.; Taketsugu, T.; Kato, M. J. Am. Chem.
Soc. 2013, 135, 8646−8654.
(66) Klamt, A.; Schueuermann, G. J. Chem. Soc., Perkin Trans. 2 1993,
799−805.
(31) Lu, F.; Zarkesh, R. A.; Heyduk, A. F. Eur. J. Inorg. Chem. 2012,
2012, 467−470.
(67) Despite repeated efforts, it was not possible to generate an
Fe(II) complex containing the monoanionic form of tBuPDA, reflecting
the weaker acidity of aryl amines relative to phenols and catechols.
(68) The yellow color of [3]OTf is due to an absorption band near
400 nm that arises from a catecholate-to-iron(II) charge transfer (CT)
transition. In the case of [4](OTf)2, the ligand-based orbitals of neutral
tBuPDA are stabilized relative to those of anionic tBuCatH. Thus, the
corresponding tBuPDA-to-Fe(II) CT transition is shifted to higher
energy and exists entirely in the UV region, resulting in a colorless
complex.
(32) Vaillancourt, F. H.; Bolin, J. T.; Eltis, L. D. Crit. Rev. Biochem.
Mol. Biol. 2006, 41, 241−267.
(33) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L. Chem. Rev.
2004, 104, 939−986.
(34) Lipscomb, J. D. Curr. Opin. Struct. Biol. 2008, 18, 644−649.
(35) Emerson, J. P.; Kovaleva, E. G.; Farquhar, E. R.; Lipscomb, J. D.;
Que, L. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 7347−7352.
(36) Bittner, M. M.; Lindeman, S. V.; Fiedler, A. T. J. Am. Chem. Soc.
2012, 134, 5460−5463.
(69) Addison, A. W.; Rao, T. N.; Reedijk, J.; Vanrijn, J.; Verschoor,
G. C. J. Chem. Soc., Dalton Trans. 1984, 1349−1356.
(70) Reynolds, M. F.; Costas, M.; Ito, M.; Jo, D.-H.; Tipton, A. A.;
Whiting, A. K.; Que, L., Jr. J. Biol. Inorg. Chem. 2003, 8, 263−272.
(71) Paria, S.; Halder, P.; Chakraborty, B.; Paine, T. K. Indian J.
Chem., Sect. A 2011, 50A, 420−426.
(37) Bittner, M. M.; Kraus, D.; Lindeman, S. V.; Popescu, C. V.;
Fiedler, A. T. Chem.Eur. J. 2013, 19, 9686−9698.
(38) Bittner, M. M.; Baus, J. S.; Lindeman, S. V.; Fiedler, A. T. Eur. J.
Inorg. Chem. 2012, 1848−1856.
(39) Khomenko, T. M.; Salomatina, O. V.; Kurbakova, S. Y.; Il’ina, I.
V.; Volcho, K. P.; Komarova, N. I.; Korchagina, D. V.; Salakhutdinov,
N. F.; Tolstikov, A. G. Russ. J. Org. Chem. 2006, 42, 1653−1661.
(40) Manner, V. W.; Markle, T. F.; Freudenthal, J. H.; Roth, J. P.;
Mayer, J. M. Chem. Commun. 2008, 256−258.
(41) Stoll, S.; Schweiger, A. J. Magn. Reson. 2006, 178, 42−55.
(42) Michaud-Soret, I.; Andersson, K. K.; Que, L., Jr.; Haavik, J.
Biochemistry 1995, 34, 5504−10.
(72) Chiou, Y.-M.; Que, L., Jr. Inorg. Chem. 1995, 34, 3577−3578.
(73) Park, H.; Baus, J. S.; Lindeman, S. V.; Fiedler, A. T. Inorg. Chem.
2011, 50, 11978−11989.
(74) Baum, A. E.; Park, H.; Wang, D. N.; Lindeman, S. V.; Fiedler, A.
T. Dalton Trans. 2012, 41, 12244−12253.
(75) Masui, H.; Lever, A. B. P.; Auburn, P. R. Inorg. Chem. 1991, 30,
2402−10.
(43) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112−122.
(44) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.;
Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339−341.
(45) Frantz, D. K.; Linden, A.; Baldridge, K. K.; Siegel, J. S. J. Am.
Chem. Soc. 2012, 134, 1528−1535.
(76) Comba, P.; Wadepohl, H.; Wunderlich, S. Eur. J. Inorg. Chem.
2011, 2011, 5242−5249.
(77) Ogihara, T.; Hikichi, S.; Akita, M.; Moro-oka, Y. Inorg. Chem.
1998, 37, 2614−2615.
(78) Jo, D.-H.; Que, L., Jr. Angew. Chem., Int. Ed. 2000, 39, 4284−
4287.
(46) Kryatov, S. V.; Rybak-Akimova, E. V.; Schindler, S. Chem. Rev.
2005, 105, 2175−2226.
(79) Since MeCN was not used in the preparation of the MB
samples, the minor species is not the six-coordinate structure obtained
by XRD.
(80) Peng, S. M.; Chen, C. T.; Liaw, D. S.; Chen, C. I.; Wang, Y.
Inorg. Chim. Acta 1985, 101, L31−L33.
(81) Bugarcic, T.; Habtemariam, A.; Deeth, R. J.; Fabbiani, F. P. A.;
Parsons, S.; Sadler, P. J. Inorg. Chem. 2009, 48, 9444−9453.
(82) Juestel, T.; Bendix, J.; Metzler-Nolte, N.; Weyhermueller, T.;
Nuber, B.; Wieghardt, K. Inorg. Chem. 1998, 37, 35−43.
(83) Venegas-Yazigi, D.; Mirza, H.; Lever, A. B. P.; Lough, A. J.;
Costamagna, J.; Latorre, R. Acta Crystallogr., Sect. C: Cryst. Struct.
Commun. 2000, C56, e281−e282.
(84) Holt, B. T. O.; Vance, M. A.; Mirica, L. M.; Heppner, D. E.;
Stack, T. D. P.; Solomon, E. I. J. Am. Chem. Soc. 2009, 131, 6421−
6438.
(85) Hartl, F.; Stufkens, D. J.; Vlcek, A. Inorg. Chem. 1992, 31, 1687−
1695.
(86) Kapovsky, M.; Dares, C.; Dodsworth, E. S.; Begum, R. A.; Raco,
V.; Lever, A. B. P. Inorg. Chem. 2013, 52, 169−181.
(87) Fukuzumi, S.; Kotani, H.; Prokop, K. A.; Goldberg, D. P. J. Am.
Chem. Soc. 2011, 133, 1859−1869.
(88) Fukuzumi, S.; Kotani, H.; Lee, Y.-M.; Nam, W. J. Am. Chem. Soc.
2008, 130, 15134−15142.
(89) Because of its fast nature, it was not possible to measure
accurate activation parameters for the reaction of [3]+ with O2 using
conventional methods.
(47) Battino, R.; Cleve, H. L. Chem. Rev. 1966, 66, 395−463.
(48) Halder, P.; Paria, S.; Paine, T. K. Chem.Eur. J. 2012, 18,
11778−11787 , S11778/1-S11778/10.
(49) Bruijnincx, P. C. A.; Lutz, M.; Spek, A. L.; Hagen, W. R.;
Weckhuysen, B. M.; van Koten, G.; Gebbink, R. J. M. K. J. Am. Chem.
Soc. 2007, 129, 2275−2286.
(50) Lin, G.; Reid, G.; Bugg, T. D. H. J. Am. Chem. Soc. 2001, 123,
5030−5039.
(51) Jo, D.-H.; Chiou, Y.-M.; Que, L., Jr. Inorg. Chem. 2001, 40,
3181−3190.
(52) Shaikh, N.; Panja, A.; Banerjee, P.; Ali, M. Transition Met. Chem.
(Dordrecht, Neth.) 2003, 28, 871−880.
(53) Neese, F.ORCA - An Ab Initio, DFT and Semiempirical
Electronic Structure Package, version 2.9; Max Planck Institute for
Bioinorganic Chemistry: Muelheim, Germany, 2012.
(54) Becke, A. D. J. Chem. Phys. 1993, 98, 5648−5652.
(55) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B. 1988, 37, 785−
789.
(56) Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100,
5829−5835.
(57) Schafer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97,
2571−2577.
(58) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7,
3297−3305.
(59) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys.
1998, 109, 8218−8224.
(90) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Chem. Rev. 2010, 110,
(60) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J.
Chem. Phys. 1998, 108, 4439−4449.
6961−7001.
(91) Bordwell, F. G.; Cheng, J. P.; Harrelson, J. A. J. Am. Chem. Soc.
1988, 110, 1229−1231.
(61) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256,
454−464.
(92) Bordwell, F. G.; Cheng, J. P. J. Am. Chem. Soc. 1991, 113, 1736−
1743.
(62) Hirata, S.; Head-Gordon, M. Chem. Phys. Lett. 1999, 314, 291−
299.
(93) Bordwell, F. G.; Zhang, X. M.; Cheng, J. P. J. Org. Chem. 1993,
58, 6410−16.
(63) Hirata, S.; Head-Gordon, M. Chem. Phys. Lett. 1999, 302, 375−
382.
4060
dx.doi.org/10.1021/ic403126p | Inorg. Chem. 2014, 53, 4047−4061