Organic Letters
Letter
Chem. 2005, 70, 2835−2838. (c) Henry-Riyad, H.; Lee, C.; Purohit, V.
C.; Romo, D. Org. Lett. 2006, 8, 4363−4366. (d) Ma, G.; Nguyen, H.;
Romo, D. Org. Lett. 2007, 9, 2143−2146. (e) Purohit, V. C.; Matla, A.
S.; Romo, D. J. Am. Chem. Soc. 2008, 130, 10478−10479. (f) Leverett,
C. A.; Purohit, V. C.; Romo, D. Angew. Chem., Int. Ed. 2010, 49, 9479−
9483. (g) Morris, K. A.; Arendt, K. M.; Oh, S. H.; Romo, D. Org. Lett.
2010, 12, 3764−3767. (h) Nguyen, H.; Ma, G.; Gladysheva, T.;
Fremgen, T.; Romo, D. J. Org. Chem. 2010, 76, 2−12. (i) Nguyen, H.;
Ma, G.; Romo, D. Chem. Commun. 2010, 46, 4803−4805. (j) Liu, G.;
Romo, D. Angew. Chem., Int. Ed. 2011, 50, 7537−7540. (k) Liu, G.;
Shirley, M. E.; Romo, D. J. Org. Chem. 2012, 77, 2496−2500.
(l) Leverett, C. A.; Purohit, V. C.; Johnson, A. G.; Davis, R. L.;
Tantillo, D. J.; Romo, D. J. Am. Chem. Soc. 2012, 134, 13348−13356.
(13) For a review on isothiourea catalysis see: (d) Taylor, J. E.; Bull,
S. D.; Williams, J. M. J. Chem. Soc. Rev. 2012, 41, 2109−2121. For
examples of isothiuoreas in kinetic resolutions see: (a) Birman, V. B.;
Li, X. Org. Lett. 2006, 8, 1351−1354. (b) Birman, V. B.; Jiang, H.; Li,
X.; Guo, L.; Uffman, E. W. J. Am. Chem. Soc. 2006, 128, 6536−6537.
(c) Kobayashi, M.; Okamoto, S. Tetrahedron Lett. 2006, 47, 4347−
4350.
isothiourea catalyst and delivers lactone 3, which can be ring-
opened in situ to afford diester 4.
In conclusion, we have demonstrated the Michael addition/
lactonization of a range of acetic acids with α-keto-β,γ-
unsaturated phosphonates as masked α,β-unsaturated ester
equivalents. The synthetic utility of the lactone and diester
products has been demonstrated through a variety of product
manipulations, affording a range of stereodefined building
blocks. Further studies within our laboratory are directed
toward the development of isothioureas in catalysis.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and spectral and HPLC data for all
new compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
(14) Robinson, E. R. T.; Fallan, C.; Simal, C.; Slawin, A. M. Z.;
Smith, A. D. Chem. Sci. 2013, 4, 2193−2200.
(15) (a) Belmessieri, D.; Morrill, L. C.; Simal, C.; Slawin, A. M. Z.;
Smith, A. D. J. Am. Chem. Soc. 2011, 133, 2714−2720. (b) Morrill, L.
C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D. Chem. Sci. 2012, 3, 2088−
Notes
The authors declare no competing financial interest.
́
2093. (c) Simal, C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D. Angew.
Chem., Int. Ed. 2012, 51, 3653−3657. (d) Belmessieri, D.; Cordes, D.
B.; Slawin, A. M. Z.; Smith, A. D. Org. Lett. 2013, 15, 3472−3475.
ACKNOWLEDGMENTS
■
́
(e) Morrill, L. C.; Douglas, J.; Lebl, T.; Slawin, A. M. Z.; Fox, D. J.;
We thank the Royal Society for a University Research
Fellowship (A.D.S.) the EPSRC and GSK (CASE award to
S.R.S.), Pfizer (CASE award to S.M.L.), and EU for funding
(C.F.). We also thank the European Research Council under
the European Union’s Seventh Framework Programme (FP7/
2007-2013) ERC Grant Agreement No. 279850 and thank the
EPSRC UK National Mass Spectrometry Facility at Swansea
University.
Smith, A. D. Chem. Sci. 2013, 4, 4146−4155. (f) Stark, D. G.; Morrill,
L. C.; Yeh, P.-P.; Slawin, A. M. Z.; O’Riordan, T. J. C.; Smith, A. D.
Angew. Chem., Int. Ed. 2013, 52, 11624−11646. (g) Morrill, L. C.;
Ledingham, L. A.; Couturier, J.-P.; Bickel, J.; Harper, A. D.; Fallan, C.;
Smith, A. D. Org. Biomol. Chem. 2014, 12, 624−636. (h) Yeh, P.-P.;
Daniels, D. S. B.; Cordes, D. B.; Slawin, A. M. Z.; Smith, A. D. Org.
Lett. 2014, 16, 964−967. (i) Smith, S. R.; Douglas, J.; Prevet, H.;
Shapland, P.; Slawin, A. M. Z.; Smith, A. D. J. Org. Chem. 2014, 79,
1626−1639. (j) Morrill, L. C.; Smith, S. M.; Slawin, A. M. Z.; Smith, A.
D. J. Org. Chem. 2014, 79, 1640−1655. (k) West, T. H.; Daniels, D. S.
B.; Slawin, A. M. Z.; Smith, A. D. J. Am. Chem. Soc. 2014, 136, 4476−
4479.
REFERENCES
■
(1) For a review, see: Denmark, S. E.; Beutner, G. L. Angew. Chem.,
Int. Ed. 2008, 47, 1560−1638.
(16) Methyl cinnamate is not a competent electrophile for this
process. For a recent example of β,γ-unsaturated α-ketophosphonates
in NHC catalysis, see: Leckie, S. M.; Fallan, C.; Taylor, J. E.; Brown, T.
(2) (a) Marcelli, T.; Hiemstra, H. Synthesis 2010, 1229−1279.
(b) Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed. 2007, 46, 4222−4266.
(3) (a) MacMillan, D. W. C. Nature 2008, 455, 304−308. (b) List, B.
Acc. Chem. Res. 2004, 37, 548−557. (c) Notz, W.; Tanaka, F.; Barbas,
C. F. Acc. Chem. Res. 2004, 37, 580−591.
B.; Pryde, D.; Leb
1243−1249.
(17) Ortho substituents on the arylacetic acid were not tolerated in
this process under a range of reaction conditions.
́
l, T.; Slawin, A. M. Z.; Smith, A. D. Synlett 2013, 24,
(4) For recent reviews, see: (a) Ryan, S.; Candish, L.; Lupton, D.
Chem. Soc. Rev. 2013, 42, 4906−4917. (b) Douglas, J.; Churchill, G.;
Smith, A. D. Synthesis 2012, 44, 2295−2309. (c) Enders, D.; Niemeier,
O.; Henseler, A. Chem. Rev. 2007, 107, 5606−5655.
(18) CCDC 980638 contains the supplementary crystallographic
data for 15. These data can be obtained free of charge from the
́
(5) (a) Marion, N.; Díez-Gonzalez, S.; Nolan, S. P. Angew. Chem., Int.
Ed. 2007, 46, 2988−3000. (b) Enders, D.; Balensiefer, T. Acc. Chem.
Res. 2004, 37, 534−541.
(19) See the Supporting Information for details.
(20) Alcohol 29 was isolated in 91% yield from the reduction of
diester 4 with retention of stereochemistry. See the Supporting
Information for details.
(21) Lactone 32 was also obtained in quantitative yield from isolated
alcohol 29. See the Supporting Information for details.
(22) For example, see: Smitrovich, J. H.; Boice, G. N.; Qu, C.;
DiMichele, L.; Nelson, T. D.; Huffman, M. A.; Murry, J.; McNamara,
J.; Reider, P. J. Org. Lett. 2002, 4, 1963−1966.
(6) (a) Krause, N.; Hoffmann-Roder, A. Synthesis 2001, 171−196.
̈
(b) Christoffers, J.; Koripelly, G.; Rosiak, A.; Rossle, M. Synthesis 2007,
1279−1300.
̈
(7) Matsunaga, S.; Kinoshita, T.; Okada, S.; Harada, S.; Shibasaki, M.
J. Am. Chem. Soc. 2004, 126, 7559−7570.
(8) Evans, D. A.; Fandrick, K. R.; Song, H.-J. J. Am. Chem. Soc. 2005,
127, 8942−8943.
(9) Vanderwal, C. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126,
14724−14725.
(10) (a) Evans, D. A.; Scheidt, K. A.; Fandrick, K. R.; Lam, H. W.;
Wu, J. J. Am. Chem. Soc. 2003, 125, 10780−10781. (b) Evans, D. A.;
Johnson, J. S. J. Am. Chem. Soc. 1998, 120, 4895−4896.
(11) Jiang, H.; Paixao, M. W.; Monge, D.; Jørgensen, K. A. J. Am.
̃
Chem. Soc. 2010, 132, 2775−2783.
(12) (a) Cortez, G. S.; Tennyson, R. L.; Romo, D. J. Am. Chem. Soc.
2001, 123, 7945−7946. (b) Oh, S. H.; Cortez, G. S.; Romo, D. J. Org.
2509
dx.doi.org/10.1021/ol500873s | Org. Lett. 2014, 16, 2506−2509