Journal of the American Chemical Society
Article
(29) Kwon, J. E.; Park, S.; Park, S. Y. J. Am. Chem. Soc. 2013, 135,
11239−11246.
parameters. This material is available free of charge via the
(30) Mao, M.; Wang, J.-B.; Xiao, Z.-F.; Dai, S.-Y.; Song, Q.-H. Dyes
Pigm. 2012, 94, 224−232.
AUTHOR INFORMATION
Corresponding Author
■
(31) Wang, Z.; Lu, P.; Chen, S.; Gao, Z.; Shen, F.; Zhang, W.; Xu, Y.;
Kwok, H. S.; Ma, Y. J. Mater. Chem. 2011, 21, 5451.
(32) Yuan, Y.; Li, D.; Zhang, X.; Zhao, X.; Liu, Y.; Zhang, J.; Wang, Y.
New J. Chem. 2011, 35, 1534.
Notes
(33) Park, S.; Kwon, J. E.; Kim, S. H.; Seo, J.; Chung, K.; Park, S.-Y.;
Jang, D.-J.; Medina, B. M.; Gierschner, J.; Park, S. Y. J. Am. Chem. Soc.
2009, 131, 14043−14049.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(34) Compound 2b has been reported before: Nielsen, C. B.;
Pittelkow, M.; Sørensen, H. O. Acta Crystallogr. E 2005, 61, 955−956.
However, NMR and MS data have not been published to date.
(35) Boden, B. N.; Jardine, K. J.; Leung, A. C. W.; MacLachlan, M. J.
Org. Lett. 2006, 8, 1855−1858.
We acknowledge partial support from the Center for the
Sustainable Use of Renewable Feedstocks (CenSURF), an NSF
Center for Chemical Innovation (CHE-1240194). R.F. is
particularly grateful to the Alexander von Humboldt
Foundation for granting a Feodor Lynen Fellowship. We are
pleased to acknowledge the contributions of Professor Dean
Tantillo (University of California, Davis, CA) to our initial
application of quantum calculations to the present problem.
(36) Brunner, K.; van Dijken, A.; Borner, H.; Bastiaansen, J. A. M.;
̈
Kiggen, N. M. M.; Langeveld, B. M. W. J. Am. Chem. Soc. 2004, 126,
6035−6042.
(37) Karimi-Jaberi, Z.; Barekat, M. Chin. Chem. Lett. 2010, 21, 1183−
1186.
(38) Steck, E. A.; Day, A. R. J. Am. Chem. Soc. 1943, 65, 452−456.
(39) The fact that 1H-phenanthroimidazoles are easily alkylated at
position 1 might prove useful in other regards. For instance, position 1
could serve as a linking site for modification of an electrode surface
with 2 serving as heterogeneous catalyst.
(40) Pavlishchuk, V. V.; Addison, A. W. Inorg. Chim. Acta 2000, 298,
97−102.
(41) Bard, A. J.; Faulkner, L. R. Electrochemical Methods:
Fundamentals and Applications; Wiley: New York, 2001.
(42) Zuman, P. Substituent Effects in Organic Polarography; Plenum
Press: New York, 1967.
REFERENCES
■
(1) Frontana-Uribe, B. A.; Little, R. D.; Ibanez, J. G.; Palma, A.;
Vasquez-Medrano, R. Green Chem. 2010, 12, 2099−2119.
(2) Schafer, H. J.; Harenbrock, M.; Klocke, E.; Plate, M.; Weiper-
̈
Idelmann, A. Pure Appl. Chem. 2007, 79, 2047−2057.
(3) Sperry, J. B.; Wright, D. L. Chem. Soc. Rev. 2006, 35, 605.
(4) Utley, J. H. P.; Folmer Nielsen, M. Electrogenerated Bases. In
Organic Electrochemistry, 4th ed.; Lund, H., Hammerich, O., Eds.; M.
Dekker: New York, 2001; pp 1227−1258.
(5) Moeller, K. D. Tetrahedron 2000, 56, 9527−9554.
(6) Saveant, J.-M. Chem. Rev. 2008, 108, 2348−2378.
́
(7) Steckhan, E. Top. Curr. Chem. 1987, 142, 1−69.
(8) Steckhan, E. Angew. Chem., Int. Ed. Engl. 1986, 25, 683−701.
(9) Simonet, J.; Pilard, J.-F. Electrogenerated Reagents. In Organic
Electrochemistry, 4th ed.; Lund, H., Hammerich, O., Eds.; M. Dekker:
New York, 2001; pp 1163−1225.
(10) Platen, M.; Steckhan, E. Chem. Ber. 1984, 117, 1679−1694.
(11) Saito, K.; Ueoka, K.; Matsumoto, K.; Suga, S.; Nokami, T.;
Yoshida, J.-I. Angew. Chem., Int. Ed. 2011, 50, 5153−5156.
(12) Hosoi, K.; Inagi, S.; Kubo, T.; Fuchigami, T. Chem. Commun.
2011, 47, 8632−8634.
(43) Hicks, L. D.; Fry, A. J.; Kurzweil, V. C. Electrochim. Acta 2004,
50, 1039−1047.
(44) Wu, X.; Davis, A. P.; Lambert, P. C.; Kraig Steffen, L.; Toy, O.;
Fry, A. J. Tetrahedron 2009, 65, 2408−2414.
(45) The Gaussian ’09 package was used for the calculations: Frisch,
M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson,
G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov,
A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda,
Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J.
E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;
Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
(13) Park, Y. S.; Little, R. D. Electrochim. Acta 2009, 54, 5077−5082.
(14) Park, Y. S.; Little, R. D. J. Org. Chem. 2008, 73, 6807−6815.
(15) Park, Y. S.; Wang, S. C.; Tantillo, D. J.; Little, R. D. J. Org. Chem.
2007, 72, 4351−4357.
(16) Gerken, J. B.; Wang, S. C.; Preciado, A. B.; Park, Y. S.;
Nishiguchi, G.; Tantillo, D. J.; Little, R. D. J. Org. Chem. 2005, 70,
4598−4608 and references cited therein.
(17) Konig, B., Ed. Chemical Photocatalysis; De Gruyter: Berlin, 2013.
̈
̈
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
(18) Xu, K. Chem. Rev. 2004, 104, 4303−4418.
(19) Takahashi, K.; Furusawa, T.; Sawamura, T.; Kuribayashi, S.;
Inagi, S.; Fuchigami, T. Electrochim. Acta 2012, 77, 47−53.
(20) Halas, S. M.; Okyne, K.; Fry, A. J. Electrochim. Acta 2003, 48,
1837−1844.
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
(46) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B
2009, 113, 6378−6396.
(47) Hubig, S. M; Rathore, R.; Kochi, J. K. J. Am. Chem. Soc. 1999,
121, 617−626.
(48) Due to the low solubility of mediators 2a and 2b in acetonitrile,
the addition of dichloromethane was required (CH3CN/CH2Cl2 =
4:1). Since the oxidation potentials of 2c−2h do not change
significantly upon the addition of dichloromethane to the acetonitrile
solution, we are confident that our approach is still valid.
(49) Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry; Dover
Publications: Mineola, NY, 1996.
(21) Fuchigami, T.; Tetsu, M.; Tajima, T.; Ishii, H. Synlett 2001,
1269−1271.
(22) Wend, R.; Steckhan, E. Electrochim. Acta 1997, 42, 2027−2039.
(23) Dapperheld, S.; Steckhan, E.; Brinkhaus, K. H. G.; Esch, T.
Chem. Ber. 1991, 124, 2557−2567.
(24) Schmidt, W.; Steckhan, E. Chem. Ber. 1980, 113, 577−585.
(25) Yurchenko, O.; Freytag, D.; Zur Borg, L.; Zentel, R.; Heinze, J.;
Ludwigs, S. J. Phys. Chem. B 2012, 116, 30−39.
(26) Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy,
D. W.; Adams, R. N. J. Am. Chem. Soc. 1966, 88, 3498−3503.
(27) Zeng, C.-C.; Zhang, N.-T.; Lam, C. M.; Little, R. D. Org. Lett.
2012, 14, 1314−1317.
(28) Zhang, N.-T.; Zeng, C.-C.; Lam, C. M.; Gbur, R. K.; Little, R. D.
J. Org. Chem. 2013, 78, 2104−2110.
(50) Perdew, J.; Levy, M. Phys. Rev. B 1997, 56, 16021−16028.
(51) Chong, D. P.; Gritsenko, O. V; Baerends, E. J. J. Chem. Phys.
2002, 116, 1760−1772.
(52) In contrast to the Hammett plots, the intercepts of the linear fits
in Figure 4 have no specific physical meaning other than the oxidation
434
dx.doi.org/10.1021/ja410865z | J. Am. Chem. Soc. 2014, 136, 427−435