ChemComm
Communication
Financial support from the University of Heidelberg as well
as the doctoral college ‘‘Verknu¨pfung molekularer p-Systeme zu
¨
Funktionsmaterialien’’ funded by the Landesgraduiertenfor-
derung of Baden-Wu¨rttemberg is gratefully acknowledged.
The authors thank Thimon Schwaebel for determining the
fluorescence lifetimes and Nevcin Sentu¨rk for imaging.
Notes and references
‡ Crystal data: C56H32F26N8O12S4,
M = 1631.13, monoclinic, a =
10.5849(6) Å, b = 9.8070(4) Å, c = 29.9716(13) Å, b = 99.183(5)1, V =
3071.3(3) Å3, T = 110(1) K, space group P21/n, Z = 2, Cu Ka X-radiation,
l = 1.5418 Å, 44 255 reflections measured, 5881 unique (Rint = 0.0639),
wR(F2) [all unique data] = 0.1584, R(F) [Fo 4 4s(Fo)] = 0.0609.
Fig. 3 IC50 values of compound 3, 6 and 7a after treatment of HeLa cells
for 24 h.
1 H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke and Y. Urano,
Chem. Rev., 2010, 110, 2620–2640.
2 S. Ding, X. Qiao, J. Suryadi, G. S. Marrs, G. L. Kucera and U. Bierbach,
Angew. Chem., Int. Ed., 2013, 52, 3350–3354.
3 A. Goel, A. Sharma, M. Kathuria, A. Bhattacharjee, A. Verma, P. R. Mishra,
A. Nazir and K. Mitra, Org. Lett., 2014, 161, 756–759.
4 F. D. Lewis, Y. Zhang and R. L. Letsinger, J. Am. Chem. Soc., 1997,
119, 5451–5452.
5 A. Okamoto, Y. Ochi and I. Saito, Chem. Commun., 2005, 1128–1130.
6 A. Okamoto, K. Kanatani and I. Saito, J. Am. Chem. Soc., 2004, 126,
4820–4827.
20 mM 7a for 1 h at ambient temperature, which were subsequently
investigated by confocal microscopy. The results displayed in Fig. 4
show that significant amounts of the fluorescent marker were
accumulated within the nuclei of the cells. In contrast, almost no
dye was detected within the cytoplasm reflecting the specificity of
the compound for chromatin. Fig. 4b shows an enlarged image of a
cell fixed during mitosis which clearly demonstrates the preferential
accumulation of the dye at the chromatids. Additionally, staining of
HeLa cells with both DAPI (40,6-diamidino-2-phenylindol), an estab-
lished DNA marker, and 7a displayed colocalization of both com-
pounds within the nucleus, further confirming the selective staining
behaviour of 7a (figure in ESI†).
In conclusion, we have developed a synthesis process for the
highly water-soluble TAPP derivatives that possess remarkable
absorption and emission properties with fluorescence quantum
yields of up to 82% in water. We note that the chosen approach
does not involve the addition of bioconjugation moieties.19–21
First studies on their interaction with living cells show that the
compounds exhibit relatively low cytotoxicity with IC50 values of
up to 67 mM after treatment for 24 hours. Incubation of fixed cells
with 7a demonstrated selective staining of the cell nuclei. More
specifically the dye was localized especially at DNA rich regions of
the chromatids, as demonstrated by a cell in the stage of mitosis.
This suggests a direct interaction with DNA, and the investigation
of the specific interaction of the fluorescent TAPP salts with DNA
is the objective of current and future studies in our group.
7 Y. Liu, E. J. Jun, G. Kim, A.-R. Lee, J.-H. Lee and J. Yoon, Chem.
Commun., 2014, 50, 2505–2507.
8 E. Socher, L. Bethge, A. Knoll, N. Jungnick, A. Herrmann and
O. Seitz, Angew. Chem., Int. Ed., 2008, 47, 9555–9559.
9 B. Shirinfar, N. Ahmed, Y. S. Park, G.-S. Cho, I. S. Youn, J.-K. Han,
H. G. Nam and K. S. Kim, J. Am. Chem. Soc., 2013, 135, 90–93.
10 A. Toutchkine, V. Kraynov and K. Hahn, J. Am. Chem. Soc., 2003, 125,
4132–4145.
11 A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891–4932.
12 M. S. T. Gonçalves, Chem. Rev., 2009, 109, 190–212.
13 M. Fischer and J. Georges, Chem. Phys. Lett., 1996, 260, 115–118.
14 A. Kamimura, T. Nokubi, R. Watanabe, M. Ishikawa, K. Nasu,
H. Uno and M. Sumimoto, J. Org. Chem., 2014, 79, 1068–1083.
15 T. Heek, C. Fasting, C. Rest, X. Zhang, F. Wu¨rthner and R. Haag,
Chem. Commun., 2010, 46, 1884–1886.
ˇ
´
16 T. H. Rehm, M. R. Stojkovic, S. Rehm, M. Skugor, I. Piantanida and
F. Wu¨rthner, Chem. Sci., 2012, 3, 3393–3397.
17 T. Heek, F. Wu¨rthner and R. Haag, Chem. – Eur. J., 2013, 19, 10911–10921.
18 C. Kohl, T. Weil, J. Qu and K. Mu¨llen, Chem. – Eur. J., 2004, 10, 5297–5310.
19 S. L. Niu, G. Ulrich, R. Ziessel, A. Kiss, P.-Y. Renard and A. Romieu,
Org. Lett., 2009, 11, 2049–2052.
20 A. Romieu, C. Massif, S. Rihn, G. Ulrich, R. Ziessel and P.-Y. Renard,
New J. Chem., 2013, 37, 1016–1027.
21 X. Li, X. Gao, W. Shi and H. Ma, Chem. Rev., 2014, 114, 590–659.
22 G. Battagliarin, M. Davies, S. Mackowiak, C. Li and K. Mu¨llen,
ChemPhysChem, 2012, 13, 923–926.
23 Z. Xu, B. He, J. Shen, W. Yang and M. Yin, Chem. Commun., 2013, 49,
3646–3648.
24 J. Qu, C. Kohl, M. Pottek and K. Mu¨llen, Angew. Chem., Int. Ed., 2004,
43, 1528–1531.
25 P. Shao and M. Bai, Chem. Commun., 2012, 48, 9498–9500.
26 L. Bai, W. Li, J. Chen, F. Bo, B. Gao, H. Liu, J. Li, Y. Wu and X. Ba,
Macromol. Rapid Commun., 2013, 34, 539–547.
27 K. Peneva, G. Mihov, F. Nolde, S. Rocha, J. Hotta, K. Braeckmans,
J. Hofkens, H. Uji-i, A. Herrmann and K. Mu¨llen, Angew. Chem.,
Int. Ed., 2008, 47, 3372–3375.
28 T. Riehm, G. De Paoli, A. E. Konradsson, L. De Cola, H. Wadepohl
and L. H. Gade, Chem. – Eur. J., 2007, 13, 7317–7329.
¨
29 S. Geib, S. C. Martens, M. Marken, A. Rybina, H. Wadepohl and
L. H. Gade, Chem. – Eur. J., 2013, 19, 13811–13822.
¨
¨
30 S. Geib, U. Zschieschang, M. Gsanger, M. Stolte, F. Wurthner, H. Wadepohl,
H. Klauk and L. H. Gade, Adv. Funct. Mater., 2013, 23, 3866–3874.
31 S. C. Martens, U. Zschieschang, H. Wadepohl, H. Klauk and L. H.
Gade, Chem. – Eur. J., 2012, 18, 3498–3509.
Fig. 4 (a) HeLa cells incubated with 6a; (b) an enlargement of a cell fixed
during mitosis.
32 S. P. Crouch, R. Kozlowski, K. J. Slater and J. Flechter, J. Immunol.
Methods, 1993, 160, 81–88.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 4941--4943 | 4943