Oxidation of Propanoic and Cyclopropanecarboxylic Acids
SCHEME 1
SCHEME 2
its R-methyl and R-hydroxy-R-methyl derivatives, and 2,4,5-
trimethoxymandelic acid proved to be one of the most useful
reactions (Scheme 1).
Control over the decarboxylation rate constant of the inter-
mediate radical cation (or radical zwitterion) represents a key
issue for the development of these processes, and accordingly
studies aimed at the quantification of the factors that govern
this fragmentation are particularly important.
However, even though a large number of studies on the
generation and reactivity of arylalkanoic acid radical cations
have been carried out,10-21 several mechanistic aspects of these
processes are still not fully clarified. A variety of alternative
mechanistic pathways for the one-electron decarboxylative
oxidation of arylethanoic acids are described in Scheme 2.
A point that has attracted considerable attention has been that
of establishing the actual role of intermediate radical cations.
In this respect, the generally accepted mechanism for the one-
electron oxidation of arylethanoic acids involves the formation
of an aromatic radical cation (or radical zwitterion) that then
undergoes decarboxylation to give the corresponding benzyl
radical (Scheme 2, path a). However, in aqueous solution direct
evidence in this respect has been obtained only in the oxidation
of relatively electron rich substrates such as 4-dimethylami-
nophenylethanoic acid, its R-methyl and R-hydroxy-R-methyl
derivatives, 2,4,5-trimethoxymandelic acid,9 ring-dimethoxylated
phenylethanoic acids,11 and 1-naphthylethanoic acid.14a Along
this line, it cannot be excluded that the one-electron oxidation
of arylethanoic acids, characterized by higher oxidation poten-
tials, occurs following pathways b or c, i.e. bypassing radical
cation formation, as suggested recently for the one-electron
oxidation of 4-methoxyphenylethanoic acid (1).12
Moreover, also the nature of the conversion of the intermedi-
ate radical cation (or radical zwitterion) into the decarboxylated
benzyl radical has attracted considerable interest,3,13,22 since
intramolecular electron transfer (from the side-chain to the
aromatic π-system) in the radical cation (or radical zwitterion)
can be coupled to or followed by bond cleavage: in other words
decarboxylation can occur directly from the radical cation (or
radical zwitterion) or from an intermediate arylacetoxyl radical.
An additional point of interest is represented by the stability
of the decarboxylated benzyl radical, which is expected to
influence the decarboxylation rate constant.3
Along this line, in view of the importance of these processes
and in order to obtain a deeper understanding on the role of
structural effects on the one-electron oxidation of arylethanoic
acids and in particular on the possible involvement of aromatic
radical cations, we have carried out a product and time-resolved
kinetic study at different pH values on the one-electron oxidation
of 2-(4-methoxyphenyl)-2-methyl propanoic acid (2) and 1-(4-
methoxyphenyl)cyclopropanecarboxylic acid (3), two structur-
ally related substrates derived from the side-chain modification
of 4-methoxyphenylethanoic acid (1), whose structures are
displayed in Chart 1. To obtain additional information, we have
also studied the one-electron oxidation of the methyl esters of
acids 2 and 3 (substrates 4 and 5, respectively), and of 1-(4-
methoxyphenyl)cyclopropanol (6).
(2) (a) Filipiak, P.; Bartoszewicz, J.; Hug, G. L.; Kozubek, H.; Pacz-
kowski, J.; Marciniak, B. J. Photochem. Photobiol. A: Chem. 2007, 191,
167-175. (b) Filipiak, P.; Hug, G. L.; Bobrowski, K.; Marciniak, B. J.
Photochem. Photobiol. A: Chem. 2005, 172, 322-330. (c) Filipiak, P.; Hug,
G. L.; Carmichael, I.; Korzeniowska-Sobczuk, A.; Bobrowski, K.; Mar-
ciniak, B. J. Phys. Chem. A 2004, 108, 6503-6512.
(3) Gould, I. R.; Lenhard, J. R.; Farid, S. J. Phys. Chem. A 2004, 108,
10949-10956.
(4) (a) Su, Z.; Mariano, P. S.; Falvey, D. E.; Yoon, U. C.; Oh, S. W. J.
Am. Chem. Soc. 1998, 120, 10676-10686. (b) Su, Z.; Falvey, D. E.; Yoon,
U. C.; Mariano, P. S. J. Am. Chem. Soc. 1997, 119, 5261-5262.
(5) (a) Mehta, L. K.; Porssa, M.; Parrick, J.; Candeias, L. P.; Wardman,
P. J. Chem. Soc., Perkin Trans. 2 1997, 1487-1491. (b) Candeias, L. P.;
Folkes, L. K.; Dennis, M. F.; Patel, K. B.; Everett, S. A.; Stratford, M. R.
L.; Wardman, P. J. Phys. Chem. 1994, 98, 10131-10137.
(6) See for example: (a) Cleland, W. W. Acc. Chem. Res. 1999, 32,
862-868. (b) Silverman, R. B. Acc. Chem. Res. 1995, 28, 335-342. (c)
Budac, D.; Wan, P. J. Photochem. Photobiol. A: Chem. 1992, 67, 135-
166. (d) Kraeutler, B.; Jaeger, C. D.; Bard, A. J. J. Am. Chem. Soc. 1978,
100, 4903-4905.
(7) Wrzyszczyn´ski, A.; Filipiak, P.; Hug, G. L.; Marciniak, B.; Pacz-
kowski, J. Macromolecules 2000, 33, 1577-1582.
(8) Gould, I. R.; Lenhard, J. R.; Muenter, A. A.; Godleski, S. A.; Farid,
S. Pure Appl. Chem. 2001, 73, 455-458.
(9) Gould, I. R.; Lenhard, J. R.; Muenter, A. A.; Godleski, S. A.; Farid,
S. J. Am. Chem. Soc. 2000, 122, 11934-11943.
(10) Warzecha, K.-D.; Go¨rner, H.; Griesbeck, A. G. J. Phys. Chem. A
2006, 110, 3356-3363.
(11) Bietti, M.; Capone, A. J. Org. Chem. 2004, 69, 482-486.
(12) Baciocchi, E.; Bietti, M. J. Chem. Soc., Perkin Trans. 2 2002, 720-
722.
(13) Bockman, T. M.; Hubig, S. M.; Kochi, J. K. J. Org. Chem. 1997,
62, 2210-2221.
(14) (a) Steenken, S.; Warren, C. J.; Gilbert, B. C. J. Chem. Soc., Perkin
Trans. 2 1990, 335-342. (b) Gilbert, B. C.; Scarratt, C. J.; Thomas, C. B.;
Young, J. J. Chem. Soc., Perkin Trans. 2 1987, 371-380. (c) Davies, M.
J.; Gilbert, B. C.; McCleland, C. W.; Thomas, C. B.; Young, J. J. Chem.
Soc., Chem. Commun. 1984, 966-967.
CHART 1
(15) Maki, Y.; Sako, M.; Oyabu, I.; Murase, T.; Kitade, Y.; Hirota, K.
J. Chem. Soc., Chem. Commun. 1989, 1780-1782.
(16) (a) Walling, C.; El-Taliawi, G. M.; Amarnath, K. J. Am. Chem.
Soc. 1984, 106, 7573-7578. (b) Walling, C.; Camaioni, D. M. J. Org. Chem.
1978, 43, 3266-3271.
(17) (a) Jo¨nsson, L. Acta Chem. Scand. 1983, B37, 761-768. (b) Jo¨nsson,
L. Acta Chem. Scand. 1981, B35, 683-689.
(18) Taylor, E. C.; Andrade, J. G.; Rall, G. J. H.; Turchi, I. J.; Steliou,
K.; Jagdmann, G. E., Jr.; McKillop, A. J. Am. Chem. Soc. 1981, 103, 6856-
6863.
Results
(19) (a) Giordano, C.; Belli, A.; Citterio, A.; Minisci, F. J. Chem. Soc.,
Perkin Trans. 1 1981, 1574-1576. (b) Giordano, C.; Belli, A.; Citterio, A.
J. Org. Chem. 1980, 45, 345-346.
(20) Dessau, R. M.; Heiba, E. I. J. Org. Chem. 1975, 40, 3647-3649.
(21) Trahanovsky, W. S.; Cramer, J.; Brixius, D. W. J. Am. Chem. Soc.
1974, 96, 1077-1081.
Spectral Properties. Argon- or nitrogen-saturated aqueous
solutions of substrates 2-6 (0.5-2 mM) were photolyzed in
(22) Andrieux, C. P.; Gonzalez, F.; Save´ant, J.-M. J. Electroanal. Chem.
2001, 498, 171-180.
J. Org. Chem, Vol. 73, No. 2, 2008 619